| # Lint as: python3 |
| # Copyright 2019 The IREE Authors |
| # |
| # Licensed under the Apache License v2.0 with LLVM Exceptions. |
| # See https://llvm.org/LICENSE.txt for license information. |
| # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| |
| from absl import app |
| from iree.tf.support import tf_test_utils |
| from iree.tf.support import tf_utils |
| import numpy as np |
| import tensorflow.compat.v2 as tf |
| |
| |
| class DepthConv2dModule(tf.Module): |
| |
| # TODO(ataei): Add dilation and strided tests. |
| @tf.function(input_signature=[ |
| tf.TensorSpec([2, 4, 5, 2], tf.float32), |
| tf.TensorSpec([2, 2, 2, 3], tf.float32), |
| ]) |
| def conv2d_2452x2423_valid(self, img, kernel): |
| return tf.nn.depthwise_conv2d(img, |
| kernel, [1, 1, 1, 1], |
| "VALID", |
| name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([2, 4, 5, 2], tf.float32), |
| tf.TensorSpec([2, 4, 2, 3], tf.float32), |
| ]) |
| def conv2d_2452x2423_same(self, img, kernel): |
| return tf.nn.depthwise_conv2d(img, |
| kernel, [1, 1, 1, 1], |
| "SAME", |
| name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([2, 4, 5, 2], tf.float32), |
| tf.TensorSpec([2, 4, 2, 3], tf.float32), |
| ]) |
| def conv2d_2452x2423_valid_stride_2(self, img, kernel): |
| return tf.nn.depthwise_conv2d(img, |
| kernel, [1, 2, 2, 1], |
| "VALID", |
| name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([2, 4, 5, 2], tf.float32), |
| tf.TensorSpec([2, 4, 2, 3], tf.float32), |
| ]) |
| def conv2d_2452x2423_same_stride_2(self, img, kernel): |
| return tf.nn.depthwise_conv2d(img, |
| kernel, [1, 2, 2, 1], |
| "SAME", |
| name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([2, 4, 5, 4], tf.float32), |
| tf.TensorSpec([2, 4, 4, 1], tf.float32), |
| ]) |
| def conv2d_2453x2441_same_stride_1(self, img, kernel): |
| return tf.nn.depthwise_conv2d(img, |
| kernel, [1, 1, 1, 1], |
| "SAME", |
| name="result") |
| |
| |
| class ConvTest(tf_test_utils.TracedModuleTestCase): |
| |
| def __init__(self, *args, **kwargs): |
| super().__init__(*args, **kwargs) |
| self._modules = tf_test_utils.compile_tf_module(DepthConv2dModule) |
| |
| # yapf: disable |
| def test_batched_feature_unpadded(self): |
| def batched_feature_unpadded(module): |
| i = tf_utils.ndarange([2, 4, 5, 2]) |
| k = tf_utils.ndarange([2, 2, 2, 3]) |
| module.conv2d_2452x2423_valid(i, k) |
| self.compare_backends(batched_feature_unpadded, self._modules) |
| |
| def test_batched_feature_unpadded_same(self): |
| def batched_feature_unpadded_same(module): |
| i = tf_utils.ndarange([2, 4, 5, 2]) |
| k = tf_utils.ndarange([2, 4, 2, 3]) |
| module.conv2d_2452x2423_same(i, k) |
| self.compare_backends(batched_feature_unpadded_same, self._modules) |
| |
| def test_batched_feature_unpadded_same_stride_2(self): |
| def batched_feature_unpadded_same_stride_2(module): |
| i = tf_utils.ndarange([2, 4, 5, 2]) |
| k = tf_utils.ndarange([2, 4, 2, 3]) |
| module.conv2d_2452x2423_valid_stride_2(i, k) |
| self.compare_backends(batched_feature_unpadded_same_stride_2, |
| self._modules) |
| |
| def test_batched_feature_padded_same_stride_2(self): |
| def batched_feature_padded_same_stride_2(module): |
| i = tf_utils.ndarange([2, 4, 5, 2]) |
| k = tf_utils.ndarange([2, 4, 2, 3]) |
| module.conv2d_2452x2423_same_stride_2(i, k) |
| self.compare_backends(batched_feature_padded_same_stride_2, self._modules) |
| |
| def test_batched_feature_padded_same_stride_1_output_1(self): |
| def batched_feature_padded_same_stride_1_output_1(module): |
| i = tf_utils.ndarange([2, 4, 5, 4]) |
| k = tf_utils.ndarange([2, 4, 4, 1]) |
| module.conv2d_2453x2441_same_stride_1(i, k) |
| self.compare_backends(batched_feature_padded_same_stride_1_output_1, |
| self._modules) |
| # yapf: enable |
| |
| |
| def main(argv): |
| del argv # Unused |
| if hasattr(tf, 'enable_v2_behavior'): |
| tf.enable_v2_behavior() |
| tf.test.main() |
| |
| |
| if __name__ == '__main__': |
| app.run(main) |