| # Lint as: python3 |
| # Copyright 2020 The IREE Authors |
| # |
| # Licensed under the Apache License v2.0 with LLVM Exceptions. |
| # See https://llvm.org/LICENSE.txt for license information. |
| # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| """Test matrix ops via einsum""" |
| |
| from iree.tf.support import tf_test_utils |
| from iree.tf.support import tf_utils |
| import tensorflow.compat.v2 as tf |
| |
| LEFT_DIM = 6 |
| INNER_DIM = 3 |
| RIGHT_DIM = 6 |
| BATCH_DIM = 8 |
| |
| |
| class EinsumStaticModule(tf.Module): |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([LEFT_DIM, RIGHT_DIM], tf.float32), |
| ]) |
| def einsum_identity(self, x): |
| return tf.einsum('ij', x) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([LEFT_DIM, RIGHT_DIM], tf.float32), |
| ]) |
| def einsum_implicit_transpose(self, x): |
| return tf.einsum('ji', x) # :woozy: |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([LEFT_DIM, RIGHT_DIM], tf.float32), |
| ]) |
| def einsum_explicit_transpose(self, x): |
| return tf.einsum('ij -> ji', x) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([LEFT_DIM, RIGHT_DIM], tf.float32), |
| ]) |
| def einsum_implicit_trace(self, x): |
| return tf.einsum('ii', x) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([LEFT_DIM, RIGHT_DIM], tf.float32), |
| ]) |
| def einsum_explicit_trace(self, x): |
| return tf.einsum('ii ->', x) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([LEFT_DIM, RIGHT_DIM], tf.float32), |
| ]) |
| def einsum_diag(self, x): |
| return tf.einsum('ii -> i', x) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([LEFT_DIM, RIGHT_DIM], tf.float32), |
| ]) |
| def einsum_sum(self, x): |
| return tf.einsum('ij ->', x) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([LEFT_DIM, RIGHT_DIM], tf.float32), |
| ]) |
| def einsum_sum_axis_0(self, x): |
| return tf.einsum('ij -> j', x) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([LEFT_DIM, RIGHT_DIM], tf.float32), |
| ]) |
| def einsum_sum_axis_1(self, x): |
| return tf.einsum('ij -> i', x) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([LEFT_DIM, INNER_DIM], tf.float32), |
| tf.TensorSpec([INNER_DIM, RIGHT_DIM], tf.float32), |
| ]) |
| def einsum_matmul(self, lhs, rhs): |
| return tf.einsum('ij, jk -> ik', lhs, rhs) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([BATCH_DIM, LEFT_DIM, INNER_DIM], tf.float32), |
| tf.TensorSpec([INNER_DIM, RIGHT_DIM], tf.float32), |
| ]) |
| def einsum_lhs_batch(self, lhs, rhs): |
| return tf.einsum('bij, jk -> bik', lhs, rhs) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, LEFT_DIM, INNER_DIM], tf.float32), |
| tf.TensorSpec([BATCH_DIM, INNER_DIM, RIGHT_DIM], tf.float32), |
| ]) |
| def einsum_broadcast_singleton_dimension(self, lhs, rhs): |
| return tf.einsum('lij, rjk -> rik', lhs, rhs) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([BATCH_DIM, 8, 6], tf.float32), |
| tf.TensorSpec([12, 6, 4], tf.float32), |
| ]) |
| def einsum_split_heads(self, seq, weights): |
| # l: seq_len, m: d_model, h: num_heads, d: attention_depth |
| return tf.einsum('blm, hmd -> bhld', seq, weights) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([BATCH_DIM, 5, 3, 2, 6], tf.float32), |
| tf.TensorSpec([BATCH_DIM, 5, 6], tf.float32), |
| ]) |
| def einsum_batched_high_rank_matrix_vector_mul(self, lhs, rhs): |
| return tf.einsum('bijxy, biy -> bijx', lhs, rhs) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([BATCH_DIM, 2, 6], tf.float32), |
| tf.TensorSpec([BATCH_DIM, 5, 3, 6], tf.float32), |
| ]) |
| def einsum_batched_matrix_high_rank_vector_mul(self, lhs, rhs): |
| return tf.einsum('bxy, bijy -> bijx', lhs, rhs) |
| |
| |
| class EinsumStaticTest(tf_test_utils.TracedModuleTestCase): |
| |
| def __init__(self, *args, **kwargs): |
| super().__init__(*args, **kwargs) |
| self._modules = tf_test_utils.compile_tf_module(EinsumStaticModule) |
| |
| # yapf: disable |
| def test_einsum_identity(self): |
| def einsum_identity(module): |
| module.einsum_identity(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM])) |
| self.compare_backends(einsum_identity, self._modules) |
| |
| def test_einsum_implicit_transpose(self): |
| def einsum_implicit_transpose(module): |
| module.einsum_implicit_transpose(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM])) |
| self.compare_backends(einsum_implicit_transpose, self._modules) |
| |
| def test_einsum_explicit_transpose(self): |
| def einsum_explicit_transpose(module): |
| module.einsum_explicit_transpose(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM])) |
| self.compare_backends(einsum_explicit_transpose, self._modules) |
| |
| def test_einsum_implicit_trace(self): |
| def einsum_implicit_trace(module): |
| module.einsum_implicit_trace(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM])) |
| self.compare_backends(einsum_implicit_trace, self._modules) |
| |
| def test_einsum_explicit_trace(self): |
| def einsum_explicit_trace(module): |
| module.einsum_explicit_trace(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM])) |
| self.compare_backends(einsum_explicit_trace, self._modules) |
| |
| def test_einsum_diag(self): |
| def einsum_diag(module): |
| module.einsum_diag(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM])) |
| self.compare_backends(einsum_diag, self._modules) |
| |
| def test_einsum_sum(self): |
| def einsum_sum(module): |
| module.einsum_sum(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM])) |
| self.compare_backends(einsum_sum, self._modules) |
| |
| def test_einsum_sum_axis_0(self): |
| def einsum_sum_axis_0(module): |
| module.einsum_sum_axis_0(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM])) |
| self.compare_backends(einsum_sum_axis_0, self._modules) |
| |
| def test_einsum_sum_axis_1(self): |
| def einsum_sum_axis_1(module): |
| module.einsum_sum_axis_1(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM])) |
| self.compare_backends(einsum_sum_axis_1, self._modules) |
| |
| def test_einsum_matmul(self): |
| def einsum_matmul(module): |
| module.einsum_matmul(tf_utils.ndarange([LEFT_DIM, INNER_DIM]), |
| tf_utils.ndarange([INNER_DIM, RIGHT_DIM])) |
| self.compare_backends(einsum_matmul, self._modules) |
| |
| def test_einsum_lhs_batch(self): |
| def einsum_lhs_batch(module): |
| module.einsum_lhs_batch( |
| tf_utils.ndarange([BATCH_DIM, LEFT_DIM, INNER_DIM]), |
| tf_utils.ndarange([INNER_DIM, RIGHT_DIM])) |
| self.compare_backends(einsum_lhs_batch, self._modules) |
| |
| def test_einsum_broadcast_singleton_dimension(self): |
| def einsum_broadcast_singleton_dimension(module): |
| module.einsum_broadcast_singleton_dimension( |
| tf_utils.ndarange([1, LEFT_DIM, INNER_DIM]), |
| tf_utils.ndarange([BATCH_DIM, INNER_DIM, RIGHT_DIM])) |
| self.compare_backends(einsum_broadcast_singleton_dimension, self._modules) |
| |
| def test_einsum_split_heads(self): |
| def einsum_split_heads(module): |
| module.einsum_split_heads(tf_utils.ndarange([BATCH_DIM, 8, 6]), |
| tf_utils.ndarange([12, 6, 4])) |
| self.compare_backends(einsum_split_heads, self._modules) |
| |
| def test_einsum_batched_high_rank_matrix_vector_mul(self): |
| def einsum_batched_high_rank_matrix_vector_mul(module): |
| module.einsum_batched_high_rank_matrix_vector_mul( |
| tf_utils.ndarange([BATCH_DIM, 5, 3, 2, 6]), |
| tf_utils.ndarange([BATCH_DIM, 5, 6])) |
| self.compare_backends(einsum_batched_high_rank_matrix_vector_mul, |
| self._modules) |
| |
| def test_einsum_batched_matrix_high_rank_vector_mul(self): |
| def einsum_batched_matrix_high_rank_vector_mul(module): |
| module.einsum_batched_matrix_high_rank_vector_mul( |
| tf_utils.ndarange([BATCH_DIM, 2, 6]), |
| tf_utils.ndarange([BATCH_DIM, 5, 3, 6])) |
| self.compare_backends(einsum_batched_matrix_high_rank_vector_mul, |
| self._modules) |
| # yapf: enable |
| |
| |
| if __name__ == "__main__": |
| if hasattr(tf, "enable_v2_behavior"): |
| tf.enable_v2_behavior() |
| tf.test.main() |