|  | # Lint as: python3 | 
|  | # Copyright 2019 Google LLC | 
|  | # | 
|  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | # you may not use this file except in compliance with the License. | 
|  | # You may obtain a copy of the License at | 
|  | # | 
|  | #      https://www.apache.org/licenses/LICENSE-2.0 | 
|  | # | 
|  | # Unless required by applicable law or agreed to in writing, software | 
|  | # distributed under the License is distributed on an "AS IS" BASIS, | 
|  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | # See the License for the specific language governing permissions and | 
|  | # limitations under the License. | 
|  |  | 
|  | import numpy as np | 
|  | from pyiree.tf.support import tf_test_utils | 
|  | from pyiree.tf.support import tf_utils | 
|  | import tensorflow.compat.v2 as tf | 
|  |  | 
|  |  | 
|  | class Conv2dModule(tf.Module): | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([1, 4, 5, 1], tf.float32), | 
|  | tf.TensorSpec([1, 1, 1, 1], tf.float32), | 
|  | ]) | 
|  | def conv2d_1451x1111_valid(self, img, kernel): | 
|  | return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([2, 4, 5, 1], tf.float32), | 
|  | tf.TensorSpec([1, 1, 1, 1], tf.float32), | 
|  | ]) | 
|  | def conv2d_2451x1111_valid(self, img, kernel): | 
|  | return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([1, 4, 5, 1], tf.float32), | 
|  | tf.TensorSpec([2, 3, 1, 1], tf.float32), | 
|  | ]) | 
|  | def conv2d_1451x2311_valid(self, img, kernel): | 
|  | return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([1, 4, 5, 1], tf.float32), | 
|  | tf.TensorSpec([2, 3, 1, 1], tf.float32), | 
|  | ]) | 
|  | def conv2d_1451x2311_same(self, img, kernel): | 
|  | return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([2, 4, 5, 1], tf.float32), | 
|  | tf.TensorSpec([2, 3, 1, 1], tf.float32), | 
|  | ]) | 
|  | def conv2d_2451x2311_same(self, img, kernel): | 
|  | return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([1, 4, 5, 2], tf.float32), | 
|  | tf.TensorSpec([3, 2, 2, 1], tf.float32), | 
|  | ]) | 
|  | def conv2d_1452x3221_same(self, img, kernel): | 
|  | return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([1, 4, 5, 1], tf.float32), | 
|  | tf.TensorSpec([1, 1, 1, 2], tf.float32), | 
|  | ]) | 
|  | def conv2d_1451x1112_same(self, img, kernel): | 
|  | return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([1, 4, 5, 2], tf.float32), | 
|  | tf.TensorSpec([1, 1, 2, 2], tf.float32), | 
|  | ]) | 
|  | def conv2d_1452x1122_same(self, img, kernel): | 
|  | return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([1, 4, 5, 2], tf.float32), | 
|  | tf.TensorSpec([2, 2, 2, 3], tf.float32), | 
|  | ]) | 
|  | def conv2d_1452x2223_same(self, img, kernel): | 
|  | return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([1, 4, 5, 2], tf.float32), | 
|  | tf.TensorSpec([2, 2, 2, 3], tf.float32), | 
|  | ]) | 
|  | def conv2d_1452x2223_valid(self, img, kernel): | 
|  | return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([2, 4, 5, 2], tf.float32), | 
|  | tf.TensorSpec([2, 2, 2, 3], tf.float32), | 
|  | ]) | 
|  | def conv2d_2452x2223_valid(self, img, kernel): | 
|  | return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result") | 
|  |  | 
|  |  | 
|  | @tf_test_utils.compile_module(Conv2dModule) | 
|  | class ConvTest(tf_test_utils.TracedModuleTestCase): | 
|  |  | 
|  | def test_id_batch_size_1(self): | 
|  |  | 
|  | def id_batch_size_1(module): | 
|  | i = tf_utils.ndarange([1, 4, 5, 1]) | 
|  | k = np.ones([1, 1, 1, 1], dtype=np.float32) | 
|  | module.conv2d_1451x1111_valid(i, k) | 
|  |  | 
|  | self.compare_backends(id_batch_size_1) | 
|  |  | 
|  | def test_id_batch_size_2(self): | 
|  |  | 
|  | def id_batch_size_2(module): | 
|  | i = tf_utils.ndarange([2, 4, 5, 1]) | 
|  | k = np.ones([1, 1, 1, 1], dtype=np.float32) | 
|  | module.conv2d_2451x1111_valid(i, k) | 
|  |  | 
|  | self.compare_backends(id_batch_size_2) | 
|  |  | 
|  | def test_asymmetric_kernel(self): | 
|  |  | 
|  | def asymmetric_kernel(module): | 
|  | i = tf_utils.ndarange([1, 4, 5, 1]) | 
|  | k = np.array([[1, 4, 2], [-2, 0, 1]], | 
|  | dtype=np.float32).reshape(2, 3, 1, 1) | 
|  | module.conv2d_1451x2311_valid(i, k) | 
|  |  | 
|  | self.compare_backends(asymmetric_kernel) | 
|  |  | 
|  | def test_padding(self): | 
|  |  | 
|  | def padding(module): | 
|  | i = tf_utils.ndarange([1, 4, 5, 1]) | 
|  | k = np.array([[1, 4, 2], [-2, 0, 1]], | 
|  | dtype=np.float32).reshape(2, 3, 1, 1) | 
|  | module.conv2d_1451x2311_same(i, k) | 
|  |  | 
|  | self.compare_backends(padding) | 
|  |  | 
|  | def test_batched_padding(self): | 
|  |  | 
|  | def batched_padding(module): | 
|  | i = tf_utils.ndarange([2, 4, 5, 1]) | 
|  | k = np.array([[1, 4, 2], [-2, 0, 1]], | 
|  | dtype=np.float32).reshape(2, 3, 1, 1) | 
|  | module.conv2d_2451x2311_same(i, k) | 
|  |  | 
|  | self.compare_backends(batched_padding) | 
|  |  | 
|  | def test_feature_reduce(self): | 
|  |  | 
|  | def feature_reduce(module): | 
|  | i = tf_utils.ndarange([1, 4, 5, 2]) | 
|  | k = np.ones([3, 2, 2, 1], dtype=np.float32) | 
|  | module.conv2d_1452x3221_same(i, k) | 
|  |  | 
|  | self.compare_backends(feature_reduce) | 
|  |  | 
|  | def test_feature_inflate(self): | 
|  |  | 
|  | def feature_inflate(module): | 
|  | i = tf_utils.ndarange([1, 4, 5, 1]) | 
|  | k = tf_utils.ndarange([1, 1, 1, 2]) | 
|  | module.conv2d_1451x1112_same(i, k) | 
|  |  | 
|  | self.compare_backends(feature_inflate) | 
|  |  | 
|  | def test_feature_mix(self): | 
|  |  | 
|  | def feature_mix(module): | 
|  | i = tf_utils.ndarange([1, 4, 5, 2]) | 
|  | k = tf_utils.ndarange([1, 1, 2, 2]) | 
|  | module.conv2d_1452x1122_same(i, k) | 
|  |  | 
|  | self.compare_backends(feature_mix) | 
|  |  | 
|  | def test_feature_padded(self): | 
|  |  | 
|  | def feature_padded(module): | 
|  | i = tf_utils.ndarange([1, 4, 5, 2]) | 
|  | k = tf_utils.ndarange([2, 2, 2, 3]) | 
|  | module.conv2d_1452x2223_same(i, k) | 
|  |  | 
|  | self.compare_backends(feature_padded) | 
|  |  | 
|  | def test_feature_unpadded(self): | 
|  |  | 
|  | def feature_unpadded(module): | 
|  | i = tf_utils.ndarange([1, 4, 5, 2]) | 
|  | k = tf_utils.ndarange([2, 2, 2, 3]) | 
|  | module.conv2d_1452x2223_valid(i, k) | 
|  |  | 
|  | self.compare_backends(feature_unpadded) | 
|  |  | 
|  | def test_batched_feature_unpadded(self): | 
|  |  | 
|  | def batched_feature_unpadded(module): | 
|  | i = tf_utils.ndarange([2, 4, 5, 2]) | 
|  | k = tf_utils.ndarange([2, 2, 2, 3]) | 
|  | module.conv2d_2452x2223_valid(i, k) | 
|  |  | 
|  | self.compare_backends(batched_feature_unpadded) | 
|  |  | 
|  |  | 
|  | if __name__ == "__main__": | 
|  | if hasattr(tf, "enable_v2_behavior"): | 
|  | tf.enable_v2_behavior() | 
|  | tf.test.main() |