| // Copyright 2024 The IREE Authors |
| // |
| // Licensed under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "iree/base/api.h" |
| #include "iree/base/internal/cpu.h" |
| #include "iree/base/internal/flags.h" |
| #include "iree/base/internal/math.h" |
| #include "iree/base/internal/path.h" |
| #include "iree/hal/api.h" |
| #include "iree/modules/hal/module.h" |
| #include "iree/tooling/context_util.h" |
| #include "iree/tooling/device_util.h" |
| #include "iree/vm/api.h" |
| #include "iree/vm/native_module_cc.h" |
| |
| IREE_FLAG(bool, require_exact_results, true, |
| "Requires floating point result elements to match exactly."); |
| IREE_FLAG( |
| float, acceptable_fp_delta, 1e-5f, |
| "Maximum absolute difference allowed with inexact floating point results."); |
| IREE_FLAG( |
| int32_t, max_elements_to_check, 10000, |
| "Maximum number of matrix elements to check for each matmul. For larger " |
| "matrices, only every n-th element will be checked for some n chosed to " |
| "stay just under that threshold and to avoid being a divisor of the inner " |
| "dimension size to avoid special patterns. As the check uses a slow " |
| "reference implementation, this is a trade-off between test latency and " |
| "coverage. The value 0 means check all elements."); |
| |
| //===----------------------------------------------------------------------===// |
| // Utilities |
| //===----------------------------------------------------------------------===// |
| |
| static const char* emoji(bool good) { return good ? "🦄" : "🐞"; } |
| |
| static int calculate_check_every(iree_hal_dim_t m_size, iree_hal_dim_t n_size) { |
| int check_every = 1; |
| if (FLAG_max_elements_to_check) { |
| check_every = ((m_size * n_size) + FLAG_max_elements_to_check - 1) / |
| FLAG_max_elements_to_check; |
| if (check_every < 1) check_every = 1; |
| if (check_every > 1) |
| while ((n_size % check_every) == 0) ++check_every; |
| } |
| return check_every; |
| } |
| |
| // Defines the type of a primitive value. |
| typedef enum iree_e2e_test_value_type_e { |
| // Not a value type. |
| IREE_E2E_TEST_VALUE_TYPE_NONE = 0, |
| // int8_t. |
| IREE_E2E_TEST_VALUE_TYPE_I8 = 1, |
| // int16_t. |
| IREE_E2E_TEST_VALUE_TYPE_I16 = 2, |
| // int32_t. |
| IREE_E2E_TEST_VALUE_TYPE_I32 = 3, |
| // int64_t. |
| IREE_E2E_TEST_VALUE_TYPE_I64 = 4, |
| // halft_t. |
| IREE_E2E_TEST_VALUE_TYPE_F16 = 5, |
| // float. |
| IREE_E2E_TEST_VALUE_TYPE_F32 = 6, |
| // double. |
| IREE_E2E_TEST_VALUE_TYPE_F64 = 7, |
| // bfloat16 |
| IREE_E2E_TEST_VALUE_TYPE_BF16 = 8, |
| } iree_e2e_test_value_type_t; |
| |
| // Maximum size, in bytes, of any value type we can represent. |
| #define IREE_E2E_TEST_VALUE_STORAGE_SIZE 8 |
| |
| // A variant value type. |
| typedef struct iree_e2e_test_value_t { |
| iree_e2e_test_value_type_t type; |
| union { |
| int8_t i8; |
| int16_t i16; |
| int32_t i32; |
| int64_t i64; |
| float f32; |
| uint16_t f16_u16; |
| uint16_t bf16_u16; |
| double f64; |
| uint8_t value_storage[IREE_E2E_TEST_VALUE_STORAGE_SIZE]; // max size of all |
| // value types |
| }; |
| } iree_e2e_test_value_t; |
| |
| static inline iree_e2e_test_value_t iree_e2e_test_value_make_none() { |
| iree_e2e_test_value_t result; |
| result.type = IREE_E2E_TEST_VALUE_TYPE_NONE; |
| return result; |
| } |
| |
| static inline iree_e2e_test_value_t iree_e2e_test_value_make_i8(int8_t value) { |
| iree_e2e_test_value_t result; |
| result.type = IREE_E2E_TEST_VALUE_TYPE_I8; |
| result.i8 = value; |
| return result; |
| } |
| |
| static inline iree_e2e_test_value_t iree_e2e_test_value_make_i16( |
| int16_t value) { |
| iree_e2e_test_value_t result; |
| result.type = IREE_E2E_TEST_VALUE_TYPE_I16; |
| result.i16 = value; |
| return result; |
| } |
| |
| static inline iree_e2e_test_value_t iree_e2e_test_value_make_i32( |
| int32_t value) { |
| iree_e2e_test_value_t result; |
| result.type = IREE_E2E_TEST_VALUE_TYPE_I32; |
| result.i32 = value; |
| return result; |
| } |
| |
| static inline iree_e2e_test_value_t iree_e2e_test_value_make_f16( |
| uint16_t value) { |
| iree_e2e_test_value_t result; |
| result.type = IREE_E2E_TEST_VALUE_TYPE_F16; |
| result.f16_u16 = value; |
| return result; |
| } |
| |
| static inline iree_e2e_test_value_t iree_e2e_test_value_make_bf16( |
| uint16_t value) { |
| iree_e2e_test_value_t result; |
| result.type = IREE_E2E_TEST_VALUE_TYPE_BF16; |
| result.bf16_u16 = value; |
| return result; |
| } |
| |
| static inline iree_e2e_test_value_t iree_e2e_test_value_make_f32(float value) { |
| iree_e2e_test_value_t result; |
| result.type = IREE_E2E_TEST_VALUE_TYPE_F32; |
| result.f32 = value; |
| return result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Reference matmul |
| //===----------------------------------------------------------------------===// |
| |
| // Reads an element from a mapped row-major matrix buffer. |
| static iree_e2e_test_value_t read_matrix_element( |
| iree_hal_dim_t m_size, iree_hal_dim_t n_size, |
| iree_hal_element_type_t result_type, const void* data, iree_hal_dim_t m, |
| iree_hal_dim_t n) { |
| iree_host_size_t index = n + m * n_size; |
| (void)m_size; |
| if (iree_hal_element_type_is_integer(result_type, 8)) { |
| return iree_e2e_test_value_make_i8(((int8_t*)data)[index]); |
| } else if (iree_hal_element_type_is_integer(result_type, 16)) { |
| return iree_e2e_test_value_make_i16(((int16_t*)data)[index]); |
| } else if (iree_hal_element_type_is_integer(result_type, 32)) { |
| return iree_e2e_test_value_make_i32(((int32_t*)data)[index]); |
| } else if (result_type == IREE_HAL_ELEMENT_TYPE_FLOAT_16) { |
| return iree_e2e_test_value_make_f16(((uint16_t*)data)[index]); |
| } else if (result_type == IREE_HAL_ELEMENT_TYPE_BFLOAT_16) { |
| return iree_e2e_test_value_make_bf16(((uint16_t*)data)[index]); |
| } else if (result_type == IREE_HAL_ELEMENT_TYPE_FLOAT_32) { |
| return iree_e2e_test_value_make_f32(((float*)data)[index]); |
| } |
| iree_status_abort(iree_make_status(IREE_STATUS_INVALID_ARGUMENT, |
| "unhandled matmul result type")); |
| return iree_e2e_test_value_make_none(); |
| } |
| |
| // Get the shape of a buffer_view that is a matrix, i.e. 2D shape. |
| static iree_status_t get_matrix_shape(iree_hal_buffer_view_t* buffer_view, |
| iree_hal_dim_t* dims) { |
| iree_host_size_t shape_rank = iree_hal_buffer_view_shape_rank(buffer_view); |
| if (shape_rank != 2) { |
| return iree_make_status( |
| IREE_STATUS_INVALID_ARGUMENT, |
| "expected a matrix (2D tensor) shape, got a %" PRIhsz |
| "-dimensional shape", |
| shape_rank); |
| } |
| dims[0] = iree_hal_buffer_view_shape_dim(buffer_view, 0); |
| dims[1] = iree_hal_buffer_view_shape_dim(buffer_view, 1); |
| if (!(dims[0] > 0 && dims[1] > 0)) { |
| return iree_make_status(IREE_STATUS_INVALID_ARGUMENT, |
| "expected matrix dims to be positive, got %" PRIdim |
| "x%" PRIdim, |
| dims[0], dims[1]); |
| } |
| return iree_ok_status(); |
| } |
| |
| #define REFERENCE_MATMUL(LHSTYPE, RHSTYPE, RESTYPE, ACCTYPE) \ |
| static void reference_matmul_##LHSTYPE##_##RHSTYPE##_##RESTYPE##_##ACCTYPE( \ |
| iree_hal_dim_t m_size, iree_hal_dim_t k_size, iree_hal_dim_t n_size, \ |
| iree_hal_element_type_t lhs_type, iree_hal_element_type_t rhs_type, \ |
| iree_hal_element_type_t acc_type, const LHSTYPE* lhs_data, \ |
| const RHSTYPE* rhs_data, const ACCTYPE* acc_data, RESTYPE* result_data, \ |
| iree_hal_dim_t m, iree_hal_dim_t n) { \ |
| ACCTYPE acc = acc_data ? acc_data[n + m * n_size] : 0; \ |
| for (iree_hal_dim_t k = 0; k < k_size; ++k) { \ |
| LHSTYPE lhs_value = lhs_data[k + m * k_size]; \ |
| RHSTYPE rhs_value = rhs_data[n + k * n_size]; \ |
| acc += (ACCTYPE)lhs_value * (ACCTYPE)rhs_value; \ |
| } \ |
| result_data[n + m * n_size] = acc; \ |
| } |
| |
| // Reference mamtul instantiations from macro REFERENCE_MATMUL |
| // for the f32 input, f32 accumlation, and f32 result. |
| // [float <= float * float + float] |
| REFERENCE_MATMUL(float, float, float, float) |
| |
| // Reference mamtul instantiations from macro REFERENCE_MATMUL |
| // for the int8_t input, int32_t accumlation, and int32_t result. |
| // [i32 <= i8 * i8 + i32] |
| REFERENCE_MATMUL(int8_t, int8_t, int32_t, int32_t) |
| |
| // Reference mamtul instantiations from macro REFERENCE_MATMUL |
| // for the int32_t input, int32_t accumlation, and int32_t result. |
| // [i32 <= i32 * i32 + i32] |
| REFERENCE_MATMUL(int32_t, int32_t, int32_t, int32_t) |
| |
| // Reference mamtul for the f16 input, f16 accumlation, and f16 result. |
| // [f16 <= f16 * f16 + f16] |
| static void reference_matmul_f16_f16_f16_f16( |
| iree_hal_dim_t m_size, iree_hal_dim_t k_size, iree_hal_dim_t n_size, |
| iree_hal_element_type_t lhs_type, iree_hal_element_type_t rhs_type, |
| iree_hal_element_type_t acc_type, const uint16_t* lhs_data, |
| const uint16_t* rhs_data, const uint16_t* acc_data, uint16_t* result_data, |
| iree_hal_dim_t m, iree_hal_dim_t n) { |
| float acc = acc_data ? iree_math_f16_to_f32(acc_data[n + m * n_size]) : 0.f; |
| for (iree_hal_dim_t k = 0; k < k_size; ++k) { |
| acc += iree_math_f16_to_f32(lhs_data[k + m * k_size]) * |
| iree_math_f16_to_f32(rhs_data[n + k * n_size]); |
| } |
| result_data[n + m * n_size] = iree_math_f32_to_f16(acc); |
| } |
| |
| // Reference mamtul for the f16 input, f32 accumlation, and f32 result. |
| // [f32 <= f16 * f16 + f32] |
| static void reference_matmul_f16_f16_f32_f32( |
| iree_hal_dim_t m_size, iree_hal_dim_t k_size, iree_hal_dim_t n_size, |
| iree_hal_element_type_t lhs_type, iree_hal_element_type_t rhs_type, |
| iree_hal_element_type_t acc_type, const uint16_t* lhs_data, |
| const uint16_t* rhs_data, const float* acc_data, float* result_data, |
| iree_hal_dim_t m, iree_hal_dim_t n) { |
| float acc = acc_data ? acc_data[n + m * n_size] : 0.f; |
| for (iree_hal_dim_t k = 0; k < k_size; ++k) { |
| acc += iree_math_f16_to_f32(lhs_data[k + m * k_size]) * |
| iree_math_f16_to_f32(rhs_data[n + k * n_size]); |
| } |
| result_data[n + m * n_size] = acc; |
| } |
| |
| // Reference mamtul for the bf16 input, bf16 accumlation, and bf16 result. |
| // [bf16 <= bf16 * bf16 + bf16] |
| static void reference_matmul_bf16_bf16_bf16_bf16( |
| iree_hal_dim_t m_size, iree_hal_dim_t k_size, iree_hal_dim_t n_size, |
| iree_hal_element_type_t lhs_type, iree_hal_element_type_t rhs_type, |
| iree_hal_element_type_t acc_type, const uint16_t* lhs_data, |
| const uint16_t* rhs_data, const uint16_t* acc_data, uint16_t* result_data, |
| iree_hal_dim_t m, iree_hal_dim_t n) { |
| float acc = acc_data ? iree_math_bf16_to_f32(acc_data[n + m * n_size]) : 0.f; |
| for (iree_hal_dim_t k = 0; k < k_size; ++k) { |
| acc += iree_math_bf16_to_f32(lhs_data[k + m * k_size]) * |
| iree_math_bf16_to_f32(rhs_data[n + k * n_size]); |
| } |
| result_data[n + m * n_size] = iree_math_f32_to_bf16(acc); |
| } |
| |
| // Reference mamtul for the bf16 input, f32 accumlation, and f32 result. |
| // [f32 <= bf16 * bf16 + f32] |
| static void reference_matmul_bf16_bf16_f32_f32( |
| iree_hal_dim_t m_size, iree_hal_dim_t k_size, iree_hal_dim_t n_size, |
| iree_hal_element_type_t lhs_type, iree_hal_element_type_t rhs_type, |
| iree_hal_element_type_t acc_type, const uint16_t* lhs_data, |
| const uint16_t* rhs_data, const float* acc_data, float* result_data, |
| iree_hal_dim_t m, iree_hal_dim_t n) { |
| float acc = acc_data ? acc_data[n + m * n_size] : 0.f; |
| for (iree_hal_dim_t k = 0; k < k_size; ++k) { |
| acc += iree_math_bf16_to_f32(lhs_data[k + m * k_size]) * |
| iree_math_bf16_to_f32(rhs_data[n + k * n_size]); |
| } |
| result_data[n + m * n_size] = acc; |
| } |
| |
| // Helper for reference_matmul. |
| // Computes one element in the result matrix. |
| static iree_status_t reference_matmul_element( |
| iree_hal_dim_t m_size, iree_hal_dim_t k_size, iree_hal_dim_t n_size, |
| iree_hal_element_type_t lhs_type, iree_hal_element_type_t rhs_type, |
| iree_hal_element_type_t acc_type, void* lhs_data, void* rhs_data, |
| void* acc_data, void* result_data, iree_hal_dim_t m, iree_hal_dim_t n) { |
| if (lhs_type == IREE_HAL_ELEMENT_TYPE_FLOAT_32 && |
| rhs_type == IREE_HAL_ELEMENT_TYPE_FLOAT_32 && |
| acc_type == IREE_HAL_ELEMENT_TYPE_FLOAT_32) { |
| reference_matmul_float_float_float_float( |
| m_size, k_size, n_size, lhs_type, rhs_type, acc_type, |
| (const float*)lhs_data, (const float*)rhs_data, (const float*)acc_data, |
| (float*)result_data, m, n); |
| } else if (iree_hal_element_type_is_integer(lhs_type, 8) && |
| iree_hal_element_type_is_integer(rhs_type, 8) && |
| iree_hal_element_type_is_integer(acc_type, 32)) { |
| reference_matmul_int8_t_int8_t_int32_t_int32_t( |
| m_size, k_size, n_size, lhs_type, rhs_type, acc_type, |
| (const int8_t*)lhs_data, (const int8_t*)rhs_data, |
| (const int32_t*)acc_data, (int32_t*)result_data, m, n); |
| } else if (iree_hal_element_type_is_integer(lhs_type, 32) && |
| iree_hal_element_type_is_integer(rhs_type, 32) && |
| iree_hal_element_type_is_integer(acc_type, 32)) { |
| reference_matmul_int32_t_int32_t_int32_t_int32_t( |
| m_size, k_size, n_size, lhs_type, rhs_type, acc_type, |
| (const int32_t*)lhs_data, (const int32_t*)rhs_data, |
| (const int32_t*)acc_data, (int32_t*)result_data, m, n); |
| } else if (lhs_type == IREE_HAL_ELEMENT_TYPE_FLOAT_16 && |
| rhs_type == IREE_HAL_ELEMENT_TYPE_FLOAT_16 && |
| acc_type == IREE_HAL_ELEMENT_TYPE_FLOAT_16) { |
| reference_matmul_f16_f16_f16_f16( |
| m_size, k_size, n_size, lhs_type, rhs_type, acc_type, |
| (const uint16_t*)lhs_data, (const uint16_t*)rhs_data, |
| (const uint16_t*)acc_data, (uint16_t*)result_data, m, n); |
| } else if (lhs_type == IREE_HAL_ELEMENT_TYPE_FLOAT_16 && |
| rhs_type == IREE_HAL_ELEMENT_TYPE_FLOAT_16 && |
| acc_type == IREE_HAL_ELEMENT_TYPE_FLOAT_32) { |
| reference_matmul_f16_f16_f32_f32( |
| m_size, k_size, n_size, lhs_type, rhs_type, acc_type, |
| (const uint16_t*)lhs_data, (const uint16_t*)rhs_data, |
| (const float*)acc_data, (float*)result_data, m, n); |
| } else if (lhs_type == IREE_HAL_ELEMENT_TYPE_BFLOAT_16 && |
| rhs_type == IREE_HAL_ELEMENT_TYPE_BFLOAT_16 && |
| acc_type == IREE_HAL_ELEMENT_TYPE_BFLOAT_16) { |
| reference_matmul_bf16_bf16_bf16_bf16( |
| m_size, k_size, n_size, lhs_type, rhs_type, acc_type, |
| (const uint16_t*)lhs_data, (const uint16_t*)rhs_data, |
| (const uint16_t*)acc_data, (uint16_t*)result_data, m, n); |
| } else if (lhs_type == IREE_HAL_ELEMENT_TYPE_BFLOAT_16 && |
| rhs_type == IREE_HAL_ELEMENT_TYPE_BFLOAT_16 && |
| acc_type == IREE_HAL_ELEMENT_TYPE_FLOAT_32) { |
| reference_matmul_bf16_bf16_f32_f32( |
| m_size, k_size, n_size, lhs_type, rhs_type, acc_type, |
| (const uint16_t*)lhs_data, (const uint16_t*)rhs_data, |
| (const float*)acc_data, (float*)result_data, m, n); |
| } else { |
| return iree_make_status(IREE_STATUS_INVALID_ARGUMENT, |
| "unhandled combination of element types in matmul"); |
| } |
| return iree_ok_status(); |
| } |
| |
| // Reference matmul implementation, used to compare matmul results against. |
| static iree_status_t reference_matmul( |
| iree_hal_dim_t m_size, iree_hal_dim_t k_size, iree_hal_dim_t n_size, |
| iree_hal_element_type_t lhs_type, iree_hal_element_type_t rhs_type, |
| iree_hal_element_type_t acc_type, iree_byte_span_t lhs_contents, |
| iree_byte_span_t rhs_contents, iree_byte_span_t acc_contents, |
| iree_byte_span_t result_contents, int compute_every) { |
| IREE_TRACE_ZONE_BEGIN(z0); |
| IREE_TRACE_ZONE_APPEND_VALUE_I64(z0, m_size); |
| IREE_TRACE_ZONE_APPEND_VALUE_I64(z0, k_size); |
| IREE_TRACE_ZONE_APPEND_VALUE_I64(z0, n_size); |
| |
| iree_host_size_t count = 0; |
| for (iree_hal_dim_t m = 0; m < m_size; ++m) { |
| for (iree_hal_dim_t n = 0; n < n_size; ++n) { |
| if (++count < compute_every) continue; |
| count = 0; |
| IREE_RETURN_IF_ERROR(reference_matmul_element( |
| m_size, k_size, n_size, lhs_type, rhs_type, acc_type, |
| lhs_contents.data, rhs_contents.data, acc_contents.data, |
| result_contents.data, m, n)); |
| } |
| } |
| |
| IREE_TRACE_ZONE_END(z0); |
| return iree_ok_status(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Matmul comparison/logging |
| //===----------------------------------------------------------------------===// |
| |
| typedef struct { |
| iree_allocator_t host_allocator; |
| iree_hal_dim_t m; |
| iree_hal_dim_t k; |
| iree_hal_dim_t n; |
| iree_hal_element_type_t lhs_type; |
| iree_hal_element_type_t rhs_type; |
| iree_hal_element_type_t acc_type; |
| iree_hal_element_type_t result_type; |
| iree_byte_span_t lhs_contents; |
| iree_byte_span_t rhs_contents; |
| iree_byte_span_t acc_contents; |
| iree_byte_span_t actual_contents; |
| iree_byte_span_t expected_contents; |
| } matmul_results_t; |
| |
| static void matmul_results_deinitialize(matmul_results_t* results); |
| |
| static iree_status_t matmul_results_initialize( |
| iree_hal_device_t* device, iree_hal_dim_t m_size, iree_hal_dim_t k_size, |
| iree_hal_dim_t n_size, iree_hal_buffer_view_t* lhs, |
| iree_hal_buffer_view_t* rhs, iree_hal_buffer_view_t* acc, |
| iree_hal_buffer_view_t* result, iree_allocator_t host_allocator, |
| matmul_results_t* out_results) { |
| IREE_TRACE_ZONE_BEGIN(z0); |
| |
| memset(out_results, 0, sizeof(*out_results)); |
| out_results->host_allocator = host_allocator; |
| |
| out_results->m = m_size; |
| out_results->k = k_size; |
| out_results->n = n_size; |
| |
| out_results->lhs_type = iree_hal_buffer_view_element_type(lhs); |
| out_results->rhs_type = iree_hal_buffer_view_element_type(rhs); |
| out_results->acc_type = iree_hal_buffer_view_element_type(result); |
| out_results->result_type = iree_hal_buffer_view_element_type(result); |
| |
| iree_hal_buffer_t* lhs_buffer = iree_hal_buffer_view_buffer(lhs); |
| iree_hal_buffer_t* rhs_buffer = iree_hal_buffer_view_buffer(rhs); |
| iree_hal_buffer_t* acc_buffer = acc ? iree_hal_buffer_view_buffer(acc) : NULL; |
| iree_hal_buffer_t* result_buffer = iree_hal_buffer_view_buffer(result); |
| |
| iree_status_t status = iree_ok_status(); |
| |
| if (iree_status_is_ok(status)) { |
| out_results->lhs_contents.data_length = |
| iree_hal_buffer_byte_length(lhs_buffer); |
| status = iree_allocator_malloc(host_allocator, |
| out_results->lhs_contents.data_length, |
| (void**)&out_results->lhs_contents.data); |
| } |
| if (iree_status_is_ok(status)) { |
| status = iree_hal_device_transfer_d2h( |
| device, lhs_buffer, 0, out_results->lhs_contents.data, |
| out_results->lhs_contents.data_length, |
| IREE_HAL_TRANSFER_BUFFER_FLAG_DEFAULT, iree_infinite_timeout()); |
| } |
| |
| if (iree_status_is_ok(status)) { |
| out_results->rhs_contents.data_length = |
| iree_hal_buffer_byte_length(rhs_buffer); |
| status = iree_allocator_malloc(host_allocator, |
| out_results->rhs_contents.data_length, |
| (void**)&out_results->rhs_contents.data); |
| } |
| if (iree_status_is_ok(status)) { |
| status = iree_hal_device_transfer_d2h( |
| device, rhs_buffer, 0, out_results->rhs_contents.data, |
| out_results->rhs_contents.data_length, |
| IREE_HAL_TRANSFER_BUFFER_FLAG_DEFAULT, iree_infinite_timeout()); |
| } |
| |
| if (acc_buffer) { |
| if (iree_status_is_ok(status)) { |
| out_results->acc_contents.data_length = |
| iree_hal_buffer_byte_length(acc_buffer); |
| status = iree_allocator_malloc(host_allocator, |
| out_results->acc_contents.data_length, |
| (void**)&out_results->acc_contents.data); |
| } |
| if (iree_status_is_ok(status)) { |
| status = iree_hal_device_transfer_d2h( |
| device, acc_buffer, 0, out_results->acc_contents.data, |
| out_results->acc_contents.data_length, |
| IREE_HAL_TRANSFER_BUFFER_FLAG_DEFAULT, iree_infinite_timeout()); |
| } |
| } |
| |
| if (iree_status_is_ok(status)) { |
| out_results->actual_contents.data_length = |
| iree_hal_buffer_byte_length(result_buffer); |
| status = iree_allocator_malloc(host_allocator, |
| out_results->actual_contents.data_length, |
| (void**)&out_results->actual_contents.data); |
| } |
| if (iree_status_is_ok(status)) { |
| status = iree_hal_device_transfer_d2h( |
| device, result_buffer, 0, out_results->actual_contents.data, |
| out_results->actual_contents.data_length, |
| IREE_HAL_TRANSFER_BUFFER_FLAG_DEFAULT, iree_infinite_timeout()); |
| } |
| |
| if (iree_status_is_ok(status)) { |
| out_results->expected_contents.data_length = |
| iree_hal_buffer_byte_length(result_buffer); |
| status = iree_allocator_malloc( |
| host_allocator, out_results->expected_contents.data_length, |
| (void**)&out_results->expected_contents.data); |
| } |
| |
| if (!iree_status_is_ok(status)) { |
| matmul_results_deinitialize(out_results); |
| } |
| IREE_TRACE_ZONE_END(z0); |
| return status; |
| } |
| |
| static void matmul_results_deinitialize(matmul_results_t* results) { |
| IREE_TRACE_ZONE_BEGIN(z0); |
| |
| iree_allocator_free(results->host_allocator, results->lhs_contents.data); |
| iree_allocator_free(results->host_allocator, results->rhs_contents.data); |
| if (!iree_byte_span_is_empty(results->acc_contents)) { |
| iree_allocator_free(results->host_allocator, results->acc_contents.data); |
| } |
| iree_allocator_free(results->host_allocator, results->actual_contents.data); |
| iree_allocator_free(results->host_allocator, results->expected_contents.data); |
| |
| IREE_TRACE_ZONE_END(z0); |
| } |
| |
| // Enum controlling how many decimals to print floats with. |
| typedef enum precision_e { |
| PRECISION_LOW, |
| PRECISION_HIGH, |
| } precision_t; |
| |
| // Prints a iree_e2e_test_value_t to a string buffer. Returns the number of |
| // characters written. Like snprintf. |
| static int snprintf_value(char* buf, size_t bufsize, |
| iree_e2e_test_value_t value, precision_t precision) { |
| switch (value.type) { |
| case IREE_E2E_TEST_VALUE_TYPE_I8: |
| return snprintf(buf, bufsize, "%" PRIi8, value.i8); |
| case IREE_E2E_TEST_VALUE_TYPE_I16: |
| return snprintf(buf, bufsize, "%" PRIi16, value.i16); |
| case IREE_E2E_TEST_VALUE_TYPE_I32: |
| return snprintf(buf, bufsize, "%" PRIi32, value.i32); |
| case IREE_E2E_TEST_VALUE_TYPE_I64: |
| return snprintf(buf, bufsize, "%" PRIi64, value.i64); |
| case IREE_E2E_TEST_VALUE_TYPE_F16: |
| return snprintf(buf, bufsize, |
| precision == PRECISION_HIGH ? "%.5g" : "%.4g", |
| iree_math_f16_to_f32(value.f16_u16)); |
| case IREE_E2E_TEST_VALUE_TYPE_BF16: |
| return snprintf(buf, bufsize, |
| precision == PRECISION_HIGH ? "%.5g" : "%.4g", |
| iree_math_bf16_to_f32(value.bf16_u16)); |
| case IREE_E2E_TEST_VALUE_TYPE_F32: |
| return snprintf(buf, bufsize, |
| precision == PRECISION_HIGH ? "%.8g" : "%.4g", value.f32); |
| case IREE_E2E_TEST_VALUE_TYPE_F64: |
| return snprintf(buf, bufsize, |
| precision == PRECISION_HIGH ? "%.16g" : "%.4g", |
| value.f64); |
| default: |
| iree_status_abort(iree_make_status(IREE_STATUS_INVALID_ARGUMENT, |
| "unhandled value type")); |
| return 0; |
| } |
| } |
| |
| // Returns true if |expected| and |actual| agree to tolerable accuracy. |
| static bool matmul_result_elements_agree(iree_e2e_test_value_t expected, |
| iree_e2e_test_value_t actual) { |
| if (expected.type != actual.type) { |
| iree_status_abort( |
| iree_make_status(IREE_STATUS_INVALID_ARGUMENT, "mismatched types")); |
| return false; |
| } |
| switch (expected.type) { |
| case IREE_E2E_TEST_VALUE_TYPE_I32: |
| return actual.i32 == expected.i32; |
| // Since we fill buffers with small integers for floating point GEMMs |
| // functional testing, we can test for bit-exactness on the actual and |
| // expected values. Inexact results are only permitted when the |
| // `require_exact_results` flag is set to `false`. |
| case IREE_E2E_TEST_VALUE_TYPE_F16: |
| if (actual.f16_u16 == expected.f16_u16) return true; |
| if (FLAG_require_exact_results) return false; |
| return fabsf(iree_math_f16_to_f32(actual.f16_u16) - |
| iree_math_f16_to_f32(expected.f16_u16)) < |
| FLAG_acceptable_fp_delta; |
| case IREE_E2E_TEST_VALUE_TYPE_BF16: |
| if (actual.bf16_u16 == expected.bf16_u16) return true; |
| if (FLAG_require_exact_results) return false; |
| return fabsf(iree_math_bf16_to_f32(actual.bf16_u16) - |
| iree_math_bf16_to_f32(expected.bf16_u16)) < |
| FLAG_acceptable_fp_delta; |
| case IREE_E2E_TEST_VALUE_TYPE_F32: |
| if (actual.f32 == expected.f32) return true; |
| if (FLAG_require_exact_results) return false; |
| return fabsf(actual.f32 - expected.f32) < FLAG_acceptable_fp_delta; |
| default: |
| iree_status_abort(iree_make_status(IREE_STATUS_INVALID_ARGUMENT, |
| "unhandled value type")); |
| return false; |
| } |
| } |
| |
| // Returns the largest number of characters to print any matrix element. |
| static int get_max_elem_width(precision_t precision, iree_hal_dim_t rows, |
| iree_hal_dim_t row_start, iree_hal_dim_t row_end, |
| iree_hal_dim_t cols, iree_hal_dim_t col_start, |
| iree_hal_dim_t col_end, |
| iree_hal_element_type_t element_type, |
| const uint8_t* matrix) { |
| int max_elem_width = 0; |
| for (int row = row_start; row < row_end; row++) { |
| for (int col = col_start; col < col_end; col++) { |
| iree_e2e_test_value_t elem = |
| read_matrix_element(rows, cols, element_type, matrix, row, col); |
| // NOTE: iree_max is a macro and may evaluate its args twice. |
| char buf[64]; |
| int this_elem_width = snprintf_value(buf, sizeof(buf), elem, precision); |
| max_elem_width = iree_max(max_elem_width, this_elem_width); |
| } |
| } |
| return max_elem_width; |
| } |
| |
| // Prints |matrix| to |file|, with |label| as caption. |
| // |precision| controls how many decimals are printed for float values. |
| // |
| // If |other_matrix| is not NULL, then any matrix entries that disagree |
| // between |matrix| and |other_matrix| (according to |
| // matmul_result_elements_agree) are highlighted. |
| // |
| // |highlight| is either NULL or is a UTF-8 string that will be printed next to |
| // any entry of |matrix| that disagrees with the corresponding entry of |
| // |other_matrix|. |
| // |
| // |highlight| should be NULL if and only if |other_matrix| is NULL. |
| // |
| // In order for matrix columns to be properly laid out, the rendering of |
| // |highlight| in a fixed-width font should have the width of two regular Latin |
| // characters. According to |
| // https://www.unicode.org/reports/tr11/#Recommendations, a single emoji |
| // character should meet that requirement. |
| static void print_matrix(FILE* file, const char* label, precision_t precision, |
| iree_hal_dim_t rows, iree_hal_dim_t row_start, |
| iree_hal_dim_t row_end, iree_hal_dim_t cols, |
| iree_hal_dim_t col_start, iree_hal_dim_t col_end, |
| iree_hal_element_type_t element_type, |
| const uint8_t* matrix, const uint8_t* other_matrix, |
| const char* highlight) { |
| IREE_ASSERT((other_matrix == NULL) == (highlight == NULL)); |
| int max_elem_width = |
| get_max_elem_width(precision, rows, row_start, row_end, cols, col_start, |
| col_end, element_type, matrix); |
| if (other_matrix) { |
| // NOTE: iree_max is a macro and may evaluate its args twice. |
| int other_matrix_max_elem_width = |
| get_max_elem_width(precision, rows, row_start, row_end, cols, col_start, |
| col_end, element_type, other_matrix); |
| max_elem_width = iree_max(max_elem_width, other_matrix_max_elem_width); |
| } |
| |
| fprintf(file, |
| "%s (rows %" PRIdsz "..%" PRIdsz " out of 0..%" PRIdsz |
| ", columns %" PRIdsz "..%" PRIdsz " out of 0..%" PRIdsz ")\n", |
| label, row_start, row_end - 1, rows - 1, col_start, col_end - 1, |
| cols - 1); |
| for (int row = row_start; row < row_end; row++) { |
| for (int col = col_start; col < col_end; col++) { |
| iree_e2e_test_value_t element = |
| read_matrix_element(rows, cols, element_type, matrix, row, col); |
| bool disagree = false; |
| if (other_matrix) { |
| iree_e2e_test_value_t other_element = read_matrix_element( |
| rows, cols, element_type, other_matrix, row, col); |
| disagree = !matmul_result_elements_agree(element, other_element); |
| } |
| char buf[64]; |
| snprintf_value(buf, sizeof(buf), element, precision); |
| fprintf(file, "%*s", max_elem_width, buf); |
| // See comment on |highlight| function parameter for why 2 spaces. |
| // A 3rd space is added unconditionally to make it clear that a highlight |
| // concerns the matrix entry to its left. |
| fprintf(file, "%s ", disagree ? highlight : " "); |
| } |
| fprintf(file, "\n"); |
| } |
| } |
| |
| // Helper for check_matmul_results: handler for the failure case. |
| // If |file| is not NULL, detailed logging is written to it. |
| static iree_status_t check_matmul_failure(FILE* file, |
| const matmul_results_t* results, |
| iree_e2e_test_value_t actual_value, |
| iree_e2e_test_value_t expected_value, |
| iree_hal_dim_t row, |
| iree_hal_dim_t col, int check_every) { |
| if (!file || check_every > 1) { |
| // No logging of errors with check_every>1 as most of the reference matrix |
| // elements have not been computed. The caller is expected to retry with |
| // check_every=1. |
| return iree_make_status(IREE_STATUS_ABORTED); |
| } |
| |
| IREE_TRACE_ZONE_BEGIN(z0); |
| |
| fprintf(file, |
| "\n\nerror: the actual and expected result matrices disagree " |
| "at row %" PRIdim ", column %" PRIdim ".\n\n", |
| row, col); |
| char actual_value_buf[32]; |
| char expected_value_buf[32]; |
| snprintf_value(actual_value_buf, sizeof(actual_value_buf), actual_value, |
| PRECISION_HIGH); |
| snprintf_value(expected_value_buf, sizeof(expected_value_buf), expected_value, |
| PRECISION_HIGH); |
| fprintf(file, "actual value: %s\n", actual_value_buf); |
| fprintf(file, "expected value: %s\n", expected_value_buf); |
| |
| iree_hal_dim_t context = 8; |
| const char* context_env = getenv("IREE_MATMUL_TEST_SHOW_CONTEXT"); |
| if (context_env) { |
| if (1 != sscanf(context_env, "%" PRIdim, &context)) { |
| return iree_make_status(IREE_STATUS_INVALID_ARGUMENT, |
| "failed to parse IREE_MATMUL_TEST_SHOW_CONTEXT " |
| "as \"%%" PRIdim "\"; got \"%s\"", |
| context_env); |
| } |
| } |
| iree_hal_dim_t m_start = |
| (iree_hal_dim_t)iree_max(0, (int64_t)row - (int64_t)context); |
| iree_hal_dim_t m_end = iree_min(results->m, row + context); |
| iree_hal_dim_t n_start = |
| (iree_hal_dim_t)iree_max(0, (int64_t)col - (int64_t)context); |
| iree_hal_dim_t n_end = iree_min(results->n, col + context); |
| iree_hal_dim_t k_start = 0; |
| iree_hal_dim_t k_end = iree_min(results->k, 2 * context); |
| // [k_start, k_end) could be arbitrarily long at this point. Constrain it a |
| // bit to avoid huge output. |
| k_end = iree_min(k_end, k_start + 4 * context); |
| |
| fprintf(file, "\n"); |
| print_matrix(file, "left-hand side", PRECISION_LOW, results->m, m_start, |
| m_end, results->k, k_start, k_end, results->lhs_type, |
| results->lhs_contents.data, NULL, NULL); |
| fprintf(file, "\n"); |
| print_matrix(file, "right-hand side", PRECISION_LOW, results->k, k_start, |
| k_end, results->n, n_start, n_end, results->rhs_type, |
| results->rhs_contents.data, NULL, NULL); |
| fprintf(file, "\n"); |
| if (results->acc_contents.data) { |
| print_matrix(file, "input accumulator", PRECISION_LOW, results->m, m_start, |
| m_end, results->n, n_start, n_end, results->acc_type, |
| results->acc_contents.data, NULL, NULL); |
| fprintf(file, "\n"); |
| } |
| print_matrix(file, "expected result", PRECISION_LOW, results->m, m_start, |
| m_end, results->n, n_start, n_end, results->result_type, |
| results->expected_contents.data, results->actual_contents.data, |
| emoji(true)); |
| fprintf(file, "\n"); |
| print_matrix(file, "actual result", PRECISION_LOW, results->m, m_start, m_end, |
| results->n, n_start, n_end, results->result_type, |
| results->actual_contents.data, results->expected_contents.data, |
| emoji(false)); |
| fprintf(file, "\n"); |
| |
| IREE_TRACE_ZONE_END(z0); |
| return iree_make_status(IREE_STATUS_ABORTED); |
| } |
| |
| // Helper for check_matmul_results: the actual interesting part once we've |
| // obtained and validated the {m,k,n}_size values. On error, detailed logging is |
| // written to |file| if it is not NULL. |
| static iree_status_t check_matmul_results_impl(FILE* file, |
| const matmul_results_t* results, |
| int check_every) { |
| IREE_TRACE_ZONE_BEGIN(z0); |
| |
| IREE_RETURN_AND_END_ZONE_IF_ERROR( |
| z0, reference_matmul(results->m, results->k, results->n, |
| results->lhs_type, results->rhs_type, |
| results->acc_type, results->lhs_contents, |
| results->rhs_contents, results->acc_contents, |
| results->expected_contents, check_every)); |
| |
| int count = 0; |
| for (iree_hal_dim_t m = 0; m < results->m; ++m) { |
| for (iree_hal_dim_t n = 0; n < results->n; ++n) { |
| if (++count < check_every) continue; |
| count = 0; |
| iree_e2e_test_value_t actual_value = |
| read_matrix_element(results->m, results->n, results->result_type, |
| results->actual_contents.data, m, n); |
| iree_e2e_test_value_t expected_value = |
| read_matrix_element(results->m, results->n, results->result_type, |
| results->expected_contents.data, m, n); |
| if (!matmul_result_elements_agree(actual_value, expected_value)) { |
| iree_status_t status = check_matmul_failure( |
| file, results, actual_value, expected_value, m, n, check_every); |
| IREE_TRACE_ZONE_END(z0); |
| return status; |
| } |
| } |
| } |
| |
| IREE_TRACE_ZONE_END(z0); |
| return iree_ok_status(); |
| } |
| |
| // Given an actual matmul's inputs and output (all host-local), uses a reference |
| // matmul implementation on the same inputs to check if the output is correct. |
| // On error, detailed logging is written to |file| if it is not NULL. |
| static iree_status_t check_matmul_results(FILE* file, |
| const matmul_results_t* results) { |
| IREE_TRACE_ZONE_BEGIN(z0); |
| int check_every = calculate_check_every(results->m, results->n); |
| iree_status_t status = check_matmul_results_impl(file, results, check_every); |
| if (!iree_status_is_ok(status) && check_every > 1) { |
| // If we got a failure with check_every>1, that didn't log a useful |
| // numerical summary, as most of the reference matrix entries hadn't been |
| // computed. Rerun now with check_every=1 to get that numerical logging. |
| iree_status_ignore(status); |
| status = check_matmul_results_impl(file, results, 1); |
| } |
| IREE_TRACE_ZONE_END(z0); |
| return status; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RNG utilities |
| //===----------------------------------------------------------------------===// |
| |
| // Parameter for locally defined lcg similar to std::minstd_rand. |
| #define IREE_PRNG_MULTIPLIER 48271 |
| #define IREE_PRNG_MODULUS 2147483647 |
| |
| // Writes an element of the given |element_type| with the given integral |value| |
| // to |dst|. |
| static void write_element(iree_hal_element_type_t element_type, int32_t value, |
| void* dst) { |
| #define WRITE_ELEMENT_CASE(ETYPE, CTYPE) \ |
| case IREE_HAL_ELEMENT_TYPE_##ETYPE: \ |
| *(CTYPE*)dst = (CTYPE)value; \ |
| break; |
| |
| switch (element_type) { |
| WRITE_ELEMENT_CASE(INT_8, int8_t) |
| WRITE_ELEMENT_CASE(INT_16, int16_t) |
| WRITE_ELEMENT_CASE(INT_32, int32_t) |
| WRITE_ELEMENT_CASE(INT_64, int64_t) |
| WRITE_ELEMENT_CASE(SINT_8, int8_t) |
| WRITE_ELEMENT_CASE(SINT_16, int16_t) |
| WRITE_ELEMENT_CASE(SINT_32, int32_t) |
| WRITE_ELEMENT_CASE(SINT_64, int64_t) |
| WRITE_ELEMENT_CASE(UINT_8, uint8_t) |
| WRITE_ELEMENT_CASE(UINT_16, uint16_t) |
| WRITE_ELEMENT_CASE(UINT_32, uint32_t) |
| WRITE_ELEMENT_CASE(UINT_64, uint64_t) |
| // clang-format off |
| case IREE_HAL_ELEMENT_TYPE_FLOAT_16: |
| *(uint16_t*)dst = iree_math_f32_to_f16((float)value); |
| break; |
| case IREE_HAL_ELEMENT_TYPE_BFLOAT_16: |
| *(uint16_t*)dst = iree_math_f32_to_bf16((float)value); |
| break; |
| WRITE_ELEMENT_CASE(FLOAT_32, float) |
| WRITE_ELEMENT_CASE(FLOAT_64, double) |
| // clang-format on |
| default: |
| IREE_ASSERT(false, "unhandled element type"); |
| break; |
| } |
| |
| #undef WRITE_ELEMENT_CASE |
| } |
| |
| // Simple deterministic pseudorandom generator. |
| // This function is same as C++'s std::minstd_rand. |
| static uint32_t pseudorandom_uint32(uint32_t* state) { |
| *state = (*state * IREE_PRNG_MULTIPLIER) % IREE_PRNG_MODULUS; |
| return *state; |
| } |
| |
| // Returns a random uint32_t in the range [0, range). |
| static inline uint32_t pseudorandom_range(uint32_t* state, uint32_t range) { |
| return pseudorandom_uint32(state) % range; |
| } |
| |
| // Get minimum and maximum for integer-valued uniform distribution. |
| static void get_min_max_for_element_type(iree_hal_element_type_t element_type, |
| int32_t* min, int32_t* max) { |
| switch (element_type) { |
| case IREE_HAL_ELEMENT_TYPE_INT_8: |
| case IREE_HAL_ELEMENT_TYPE_SINT_8: |
| *min = -2; |
| *max = +2; |
| break; |
| case IREE_HAL_ELEMENT_TYPE_UINT_8: |
| *min = 0; |
| *max = +2; |
| break; |
| case IREE_HAL_ELEMENT_TYPE_INT_16: |
| case IREE_HAL_ELEMENT_TYPE_SINT_16: |
| case IREE_HAL_ELEMENT_TYPE_FLOAT_16: |
| *min = -4; |
| *max = +4; |
| break; |
| case IREE_HAL_ELEMENT_TYPE_BFLOAT_16: |
| *min = -2; |
| *max = +2; |
| break; |
| case IREE_HAL_ELEMENT_TYPE_UINT_16: |
| *min = 0; |
| *max = +4; |
| break; |
| case IREE_HAL_ELEMENT_TYPE_INT_32: |
| case IREE_HAL_ELEMENT_TYPE_SINT_32: |
| case IREE_HAL_ELEMENT_TYPE_FLOAT_32: |
| *min = -8; |
| *max = +8; |
| break; |
| case IREE_HAL_ELEMENT_TYPE_UINT_32: |
| *min = 0; |
| *max = +8; |
| break; |
| case IREE_HAL_ELEMENT_TYPE_INT_64: |
| case IREE_HAL_ELEMENT_TYPE_SINT_64: |
| case IREE_HAL_ELEMENT_TYPE_FLOAT_64: |
| *min = -16; |
| *min = +16; |
| break; |
| case IREE_HAL_ELEMENT_TYPE_UINT_64: |
| *min = 0; |
| *max = +16; |
| break; |
| default: |
| IREE_ASSERT(false, "unhandled element type"); |
| break; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // `matmul_test` custom module |
| //===----------------------------------------------------------------------===// |
| // This uses the C++ wrapper to keep things simple. Though easier to use it's |
| // got additional overhead/code-size bloat that doesn't matter in a test like |
| // this. Making a C module builder API that removes the boilerplate there is TBD |
| // so this file is written in C besides this module so that we can swap it back |
| // to being pure C in the future. |
| |
| namespace { |
| |
| using namespace iree; |
| |
| class MatmulTestModuleState final { |
| public: |
| explicit MatmulTestModuleState(iree_allocator_t host_allocator) |
| : host_allocator_(host_allocator) {} |
| ~MatmulTestModuleState() = default; |
| |
| // Fills the destination span with pseudorandom values of the given |
| // |element_type|. The given |seed| is passed to the pseudorandom generator. |
| // The pseudorandom values are reproducible both across runs and across |
| // machines. |
| StatusOr<vm::ref<iree_hal_buffer_view_t>> GenerateRandomMatrix( |
| const vm::ref<iree_hal_device_t> device, int64_t dim0, int64_t dim1, |
| iree_hal_element_type_t element_type, int32_t seed) { |
| iree_hal_dim_t dims[2] = { |
| (iree_hal_dim_t)dim0, |
| (iree_hal_dim_t)dim1, |
| }; |
| iree_hal_buffer_params_t buffer_params = {0}; |
| buffer_params.usage = IREE_HAL_BUFFER_USAGE_DEFAULT; |
| buffer_params.access = IREE_HAL_MEMORY_ACCESS_ALL; |
| buffer_params.type = IREE_HAL_MEMORY_TYPE_OPTIMAL_FOR_DEVICE; |
| vm::ref<iree_hal_buffer_view_t> result_view; |
| struct callback_state_t { |
| iree_hal_element_type_t element_type; |
| int32_t seed; |
| } callback_state = { |
| element_type, |
| seed, |
| }; |
| IREE_RETURN_IF_ERROR(iree_hal_buffer_view_generate_buffer( |
| device.get(), iree_hal_device_allocator(device.get()), |
| IREE_ARRAYSIZE(dims), dims, element_type, |
| IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR, buffer_params, |
| +[](iree_hal_buffer_mapping_t* mapping, void* user_data) { |
| callback_state_t callback_state = *(callback_state_t*)user_data; |
| iree_byte_span_t span = mapping->contents; |
| // Generate "uniform" integer-valued numbers in the range [min, max]. |
| int32_t min = 0; |
| int32_t max = 0; |
| get_min_max_for_element_type(callback_state.element_type, &min, &max); |
| uint32_t range = (max - min + 1); |
| iree_host_size_t element_byte_count = |
| iree_hal_element_dense_byte_count(callback_state.element_type); |
| uint8_t* data_end = span.data + span.data_length; |
| uint32_t state = callback_state.seed; |
| for (uint8_t* data = span.data; data < data_end; |
| data += element_byte_count) { |
| int32_t value = (int32_t)pseudorandom_range(&state, range) + min; |
| write_element(callback_state.element_type, value, data); |
| } |
| return iree_ok_status(); |
| }, |
| &callback_state, &result_view)); |
| return std::move(result_view); |
| } |
| |
| Status CheckMatmulResults( |
| const vm::ref<iree_hal_device_t> device, int64_t m, int64_t k, int64_t n, |
| const vm::ref<iree_hal_buffer_view_t> lhs, |
| const vm::ref<iree_hal_buffer_view_t> rhs, |
| const vm::ref<iree_hal_buffer_view_t> acc, |
| const vm::ref<iree_hal_buffer_view_t> actual_result) { |
| matmul_results_t results = {}; |
| IREE_RETURN_IF_ERROR(matmul_results_initialize( |
| device.get(), (iree_hal_dim_t)m, (iree_hal_dim_t)k, (iree_hal_dim_t)n, |
| lhs.get(), rhs.get(), acc.get(), actual_result.get(), host_allocator_, |
| &results)); |
| iree_status_t status = check_matmul_results(stderr, &results); |
| matmul_results_deinitialize(&results); |
| return status; |
| } |
| |
| private: |
| iree_allocator_t host_allocator_; |
| }; |
| |
| static const vm::NativeFunction<MatmulTestModuleState> |
| kMatmulTestModuleFunctions[] = { |
| vm::MakeNativeFunction("generate_random_matrix", |
| &MatmulTestModuleState::GenerateRandomMatrix), |
| vm::MakeNativeFunction("check_matmul_results", |
| &MatmulTestModuleState::CheckMatmulResults), |
| }; |
| |
| struct MatmulTestModule final : public vm::NativeModule<MatmulTestModuleState> { |
| using vm::NativeModule<MatmulTestModuleState>::NativeModule; |
| StatusOr<std::unique_ptr<MatmulTestModuleState>> CreateState( |
| iree_allocator_t host_allocator) override { |
| return std::make_unique<MatmulTestModuleState>(host_allocator); |
| } |
| }; |
| |
| } // namespace |
| |
| static iree_status_t matmul_test_module_create(iree_vm_instance_t* instance, |
| iree_allocator_t host_allocator, |
| iree_vm_module_t** out_module) { |
| IREE_ASSERT_ARGUMENT(out_module); |
| *out_module = NULL; |
| auto module = std::make_unique<MatmulTestModule>( |
| "matmul_test", /*version=*/0, instance, host_allocator, |
| iree::span<const vm::NativeFunction<MatmulTestModuleState>>( |
| kMatmulTestModuleFunctions)); |
| *out_module = module.release()->interface(); |
| return iree_ok_status(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Test runner |
| //===----------------------------------------------------------------------===// |
| |
| // Returns true if the |function| is a supported callable test function. |
| // We only support functions that are publicly exported, not an internal |
| // compiler/runtime function (__ prefixed), and take/return no args/results. |
| static iree_status_t check_test_function(iree_vm_function_t function, |
| bool* out_is_valid) { |
| *out_is_valid = true; |
| |
| iree_string_view_t function_name = iree_vm_function_name(&function); |
| if (iree_string_view_starts_with(function_name, |
| iree_make_cstring_view("__"))) { |
| // Internal compiler/runtime support function. |
| *out_is_valid = false; |
| } |
| |
| iree_vm_function_signature_t function_signature = |
| iree_vm_function_signature(&function); |
| iree_host_size_t argument_count = 0; |
| iree_host_size_t result_count = 0; |
| IREE_RETURN_IF_ERROR(iree_vm_function_call_count_arguments_and_results( |
| &function_signature, &argument_count, &result_count)); |
| if (argument_count || result_count) { |
| // Takes args or has results we don't expect. |
| *out_is_valid = false; |
| } |
| |
| return iree_ok_status(); |
| } |
| |
| // Synchronous runs a test |function|. |
| // If the test fails then the failure status is returned to the caller. |
| static iree_status_t run_test_function(iree_vm_context_t* context, |
| iree_vm_function_t function, |
| iree_allocator_t host_allocator) { |
| IREE_TRACE_ZONE_BEGIN(z0); |
| iree_string_view_t function_name = iree_vm_function_name(&function); |
| IREE_TRACE_ZONE_APPEND_TEXT(z0, function_name.data, function_name.size); |
| fprintf(stderr, "--- TEST[%.*s] ---\n", (int)function_name.size, |
| function_name.data); |
| iree_string_view_t function_desc = |
| iree_vm_function_lookup_attr_by_name(&function, IREE_SV("description")); |
| if (!iree_string_view_is_empty(function_desc)) { |
| fprintf(stderr, "%.*s\n", (int)function_desc.size, function_desc.data); |
| } |
| iree_status_t status = iree_vm_invoke( |
| context, function, IREE_VM_INVOCATION_FLAG_NONE, /*policy=*/NULL, |
| /*inputs=*/NULL, /*outputs=*/NULL, host_allocator); |
| IREE_TRACE_ZONE_END(z0); |
| return status; |
| } |
| |
| // Runs all test functions in |test_module|. |
| static iree_status_t run_all_test_functions(iree_vm_context_t* context, |
| iree_vm_module_t* test_module, |
| iree_allocator_t host_allocator) { |
| IREE_TRACE_ZONE_BEGIN(z0); |
| |
| // Walk all functions and find the ones we can run (no args, non-internal). |
| const iree_vm_module_signature_t module_signature = |
| iree_vm_module_signature(test_module); |
| for (iree_host_size_t i = 0; i < module_signature.export_function_count; |
| ++i) { |
| // Get the function and filter to just the public user exports. |
| iree_vm_function_t function; |
| IREE_RETURN_AND_END_ZONE_IF_ERROR( |
| z0, iree_vm_module_lookup_function_by_ordinal( |
| test_module, IREE_VM_FUNCTION_LINKAGE_EXPORT, i, &function)); |
| bool is_valid = false; |
| IREE_RETURN_AND_END_ZONE_IF_ERROR(z0, |
| check_test_function(function, &is_valid)); |
| if (is_valid) { |
| // Try to run the function and fail on mismatch. |
| IREE_RETURN_AND_END_ZONE_IF_ERROR( |
| z0, run_test_function(context, function, host_allocator)); |
| } |
| } |
| |
| IREE_TRACE_ZONE_END(z0); |
| return iree_ok_status(); |
| } |
| |
| // Returns OK if there are declared requirements on |module| and they are all |
| // met and otherwise UNAVAILABLE indicating that the module should not be run. |
| static iree_status_t check_module_requirements(iree_vm_module_t* module) { |
| iree_string_view_t target_features = |
| iree_vm_module_lookup_attr_by_name(module, IREE_SV("target_features")); |
| while (!iree_string_view_is_empty(target_features)) { |
| iree_string_view_t required_feature; |
| iree_string_view_split(target_features, ',', &required_feature, |
| &target_features); |
| if (iree_string_view_is_empty(required_feature)) continue; |
| int64_t feature_is_supported = 0; |
| IREE_RETURN_IF_ERROR( |
| iree_cpu_lookup_data_by_key(required_feature, &feature_is_supported)); |
| if (!feature_is_supported) { |
| return iree_make_status( |
| // The error status matters. We distinguish "feature not supported" |
| // which is a normal thing to happen from actual errors. |
| IREE_STATUS_UNAVAILABLE, |
| "target device does not have the required feature '%.*s'", |
| (int)required_feature.size, required_feature.data); |
| } |
| } |
| return iree_ok_status(); |
| } |
| |
| static iree_status_t load_and_run_e2e_tests(iree_allocator_t host_allocator) { |
| IREE_TRACE_ZONE_BEGIN(z0); |
| |
| iree_cpu_initialize(host_allocator); |
| |
| iree_vm_instance_t* instance = NULL; |
| IREE_RETURN_AND_END_ZONE_IF_ERROR( |
| z0, iree_tooling_create_instance(host_allocator, &instance)); |
| |
| iree_tooling_module_list_t module_list; |
| iree_tooling_module_list_initialize(&module_list); |
| |
| // Create the test module providing helper functions used by test programs. |
| iree_vm_module_t* matmul_test_module = NULL; |
| iree_status_t status = |
| matmul_test_module_create(instance, host_allocator, &matmul_test_module); |
| if (iree_status_is_ok(status)) { |
| status = |
| iree_tooling_module_list_push_back(&module_list, matmul_test_module); |
| } |
| iree_vm_module_release(matmul_test_module); |
| |
| // Load all modules specified by --module= flags. |
| if (iree_status_is_ok(status)) { |
| status = iree_tooling_load_modules_from_flags(instance, host_allocator, |
| &module_list); |
| } |
| iree_vm_module_t* test_module = iree_tooling_module_list_back(&module_list); |
| |
| // Create the context with our support module and all --module= flags. |
| iree_vm_context_t* context = NULL; |
| iree_hal_device_t* device = NULL; |
| if (iree_status_is_ok(status)) { |
| status = iree_tooling_create_context_from_flags( |
| instance, module_list.count, module_list.values, |
| /*default_device_uri=*/iree_string_view_empty(), host_allocator, |
| &context, &device, /*out_device_allocator=*/NULL); |
| } |
| |
| // Ensure the test module is possible to run. |
| if (iree_status_is_ok(status)) { |
| status = check_module_requirements(test_module); |
| } |
| iree_tooling_module_list_reset(&module_list); |
| |
| // Begin profiling (if enabled). |
| if (iree_status_is_ok(status)) { |
| status = iree_hal_begin_profiling_from_flags(device); |
| } |
| |
| // Run all of the tests in the test module. |
| if (iree_status_is_ok(status)) { |
| status = run_all_test_functions(context, test_module, host_allocator); |
| } |
| |
| // End profiling (if enabled). |
| if (iree_status_is_ok(status)) { |
| status = iree_hal_end_profiling_from_flags(device); |
| } |
| |
| iree_hal_device_release(device); |
| iree_vm_context_release(context); |
| iree_vm_instance_release(instance); |
| |
| IREE_TRACE_ZONE_END(z0); |
| return status; |
| } |
| |
| int main(int argc, char** argv) { |
| IREE_TRACE_APP_ENTER(); |
| |
| iree_flags_parse_checked(IREE_FLAGS_PARSE_MODE_DEFAULT, &argc, &argv); |
| if (argc != 1) { |
| fprintf(stderr, "use --module= flags to specify the modules to run\n"); |
| IREE_TRACE_APP_EXIT(EXIT_FAILURE); |
| return EXIT_FAILURE; |
| } |
| |
| iree_status_t status = load_and_run_e2e_tests(iree_allocator_system()); |
| int exit_code = EXIT_SUCCESS; |
| if (!iree_status_is_ok(status)) { |
| iree_status_fprint(stderr, status); |
| bool is_unavailable = iree_status_is_unavailable(status); |
| iree_status_free(status); |
| exit_code = is_unavailable ? EXIT_SUCCESS : EXIT_FAILURE; |
| } |
| |
| IREE_TRACE_APP_EXIT(exit_code); |
| return exit_code; |
| } |