blob: f5339154d8b8888304a3c4676be52a04f4637959 [file] [log] [blame]
# Lint as: python3
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test all applications models in Keras."""
import os
from absl import app
from absl import flags
import numpy as np
from pyiree.tf.support import tf_test_utils
from pyiree.tf.support import tf_utils
import tensorflow.compat.v2 as tf
FLAGS = flags.FLAGS
# Testing all applications models automatically can take time
# so we test it one by one, with argument --model=MobileNet
flags.DEFINE_string('model', 'ResNet50', 'model name')
flags.DEFINE_string(
'url', '', 'url with model weights '
'for example https://storage.googleapis.com/iree_models/')
flags.DEFINE_bool(
'use_external_weights', False,
'Whether or not to load external weights from the web')
flags.DEFINE_enum('data', 'cifar10', ['cifar10', 'imagenet'],
'data sets on which model was trained: imagenet, cifar10')
flags.DEFINE_bool(
'include_top', True,
'Whether or not to include the final (top) layers of the model.')
APP_MODELS = {
'ResNet50':
tf.keras.applications.resnet.ResNet50,
'ResNet101':
tf.keras.applications.resnet.ResNet101,
'ResNet152':
tf.keras.applications.resnet.ResNet152,
'ResNet50V2':
tf.keras.applications.resnet_v2.ResNet50V2,
'ResNet101V2':
tf.keras.applications.resnet_v2.ResNet101V2,
'ResNet152V2':
tf.keras.applications.resnet_v2.ResNet152V2,
'VGG16':
tf.keras.applications.vgg16.VGG16,
'VGG19':
tf.keras.applications.vgg19.VGG19,
'Xception':
tf.keras.applications.xception.Xception,
'InceptionV3':
tf.keras.applications.inception_v3.InceptionV3,
'InceptionResNetV2':
tf.keras.applications.inception_resnet_v2.InceptionResNetV2,
'MobileNet':
tf.keras.applications.mobilenet.MobileNet,
'MobileNetV2':
tf.keras.applications.mobilenet_v2.MobileNetV2,
'DenseNet121':
tf.keras.applications.densenet.DenseNet121,
'DenseNet169':
tf.keras.applications.densenet.DenseNet169,
'DenseNet201':
tf.keras.applications.densenet.DenseNet201,
'NASNetMobile':
tf.keras.applications.nasnet.NASNetMobile,
'NASNetLarge':
tf.keras.applications.nasnet.NASNetLarge,
}
def get_input_shape():
if FLAGS.data == 'imagenet':
if FLAGS.model in ['InceptionV3', 'Xception', 'InceptionResNetV2']:
return (1, 299, 299, 3)
elif FLAGS.model == 'NASNetLarge':
return (1, 331, 331, 3)
else:
return (1, 224, 224, 3)
elif FLAGS.data == 'cifar10':
return (1, 32, 32, 3)
else:
raise ValueError(f'Data not supported: {FLAGS.data}')
def load_cifar10_weights(model):
file_name = 'cifar10' + FLAGS.model
# get_file will download the model weights from a publicly available folder,
# save them to cache_dir=~/.keras/models/ and return a path to them.
url = os.path.join(
FLAGS.url, f'cifar10_include_top_{FLAGS.include_top:d}_{FLAGS.model}.h5')
weights_path = tf.keras.utils.get_file(file_name, url)
model.load_weights(weights_path)
return model
def initialize_model():
tf_utils.set_random_seed()
# Keras applications models receive input shapes without a batch dimension, as
# the batch size is dynamic by default. This selects just the image size.
input_shape = get_input_shape()[1:]
# If weights == 'imagenet', the model will load the appropriate weights from
# an external tf.keras URL.
weights = None
if FLAGS.use_external_weights and FLAGS.data == 'imagenet':
weights = 'imagenet'
model = APP_MODELS[FLAGS.model](weights=weights,
include_top=FLAGS.include_top,
input_shape=input_shape)
if FLAGS.use_external_weights and FLAGS.data == 'cifar10':
if not FLAGS.url:
raise ValueError(
'cifar10 weights cannot be loaded without the `--url` flag.')
model = load_cifar10_weights(model)
return model
class VisionModule(tf.Module):
def __init__(self):
super(VisionModule, self).__init__()
self.m = initialize_model()
self.m.predict = lambda x: self.m.call(x, training=False)
# Specify input shape with a static batch size.
# TODO(b/142948097): Add support for dynamic shapes in SPIR-V lowering.
# Replace input_shape with m.input_shape to make the batch size dynamic.
self.predict = tf.function(
input_signature=[tf.TensorSpec(get_input_shape())])(self.m.predict)
class AppTest(tf_test_utils.TracedModuleTestCase):
def __init__(self, *args, **kwargs):
super(AppTest, self).__init__(*args, **kwargs)
self._modules = tf_test_utils.compile_tf_module(VisionModule,
exported_names=['predict'])
def test_predict(self):
def predict(module):
module.predict(tf_utils.uniform(get_input_shape()), atol=1e-5, rtol=1e-5)
self.compare_backends(predict, self._modules)
def main(argv):
del argv # Unused
if hasattr(tf, 'enable_v2_behavior'):
tf.enable_v2_behavior()
if FLAGS.model not in APP_MODELS:
raise ValueError(f'Unsupported model: {FLAGS.model}')
# Override VisionModule's __name__ to be more specific.
VisionModule.__name__ = os.path.join(FLAGS.model, FLAGS.data)
tf.test.main()
if __name__ == '__main__':
app.run(main)