| // Copyright 2020 Google LLC |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "iree_tf_compiler/TF/Passes.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "mlir/IR/BuiltinOps.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" |
| #include "tensorflow/compiler/mlir/tensorflow/ir/tf_types.h" |
| |
| namespace mlir { |
| namespace iree_integrations { |
| namespace TF { |
| |
| // Determine whether we should bypass the cast for input (a) to output (b). |
| static bool shouldBypassCast(ShapedType a, ShapedType b) { |
| // If the element type changes the cast is required. |
| if (a.getElementType() != b.getElementType()) { |
| return false; |
| } |
| |
| // If we have no rank for the output we should bypass the cast. |
| if (!b.hasRank()) { |
| return true; |
| } |
| |
| // If the input doesn't have a rank we can't gain informatio |
| if (!a.hasRank()) { |
| return false; |
| } |
| |
| if (a.getRank() != b.getRank()) { |
| return false; |
| } |
| |
| auto a_shape = a.getShape(); |
| auto b_shape = b.getShape(); |
| for (auto pair : llvm::zip(a_shape, b_shape)) { |
| auto a_dim = std::get<0>(pair); |
| auto b_dim = std::get<1>(pair); |
| if (a_dim != b_dim && a_dim == -1) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Attempts to propagate resource casts by bypassing them when they are not |
| // necessary or can further refine required types. |
| class PropagateResourceCastsPass |
| : public PassWrapper<PropagateResourceCastsPass, OperationPass<ModuleOp>> { |
| public: |
| void getDependentDialects(DialectRegistry ®istry) const override { |
| registry.insert<mlir::TF::TensorFlowDialect>(); |
| } |
| |
| void runOnOperation() override { |
| auto operation = getOperation(); |
| for (auto func : operation.getOps<FuncOp>()) { |
| for (auto cast : func.getOps<mlir::TF::CastOp>()) { |
| auto input = cast.x(); |
| auto output = cast.getResult(); |
| |
| auto inputTy = input.getType().cast<ShapedType>(); |
| auto outputTy = output.getType().cast<ShapedType>(); |
| |
| // If the input/output types match we can just bypass it. |
| if (inputTy == outputTy) { |
| output.replaceAllUsesWith(input); |
| continue; |
| } |
| |
| auto inputElementTy = |
| inputTy.getElementType().dyn_cast<mlir::TF::ResourceType>(); |
| auto outputElementTy = |
| outputTy.getElementType().dyn_cast<mlir::TF::ResourceType>(); |
| |
| // Check whether it is a |
| if (!inputElementTy || !outputElementTy || |
| inputElementTy.getSubtypes().empty()) { |
| continue; |
| } |
| |
| auto input_resource_ty = inputElementTy.getSubtypes().front(); |
| if (!outputElementTy.getSubtypes().empty()) { |
| auto output_resource_ty = outputElementTy.getSubtypes().front(); |
| if (!shouldBypassCast(input_resource_ty, output_resource_ty)) { |
| continue; |
| } |
| } |
| |
| // TODO(suderman): Check which functions could be updated and |
| // substitute. |
| output.replaceAllUsesWith(input); |
| } |
| } |
| } |
| }; |
| |
| std::unique_ptr<OperationPass<ModuleOp>> createPropagateResourceCastsPass() { |
| return std::make_unique<PropagateResourceCastsPass>(); |
| } |
| |
| static PassRegistration<PropagateResourceCastsPass> pass( |
| "iree-tf-propagate-resource-casts", "Propagates tf.resource type casts"); |
| |
| } // namespace TF |
| } // namespace iree_integrations |
| } // namespace mlir |