| // Generated from this TOSA input: |
| // |
| // func.func @softmax() { |
| // %0 = util.unfoldable_constant dense<5.0> : tensor<12x128x40960xf32> |
| // %red = tosa.reduce_max %0 {axis = 2 : i64} : (tensor<12x128x40960xf32>) -> tensor<12x128x1xf32> |
| // %sub = tosa.sub %0, %red : (tensor<12x128x40960xf32>, tensor<12x128x1xf32>) -> tensor<12x128x40960xf32> |
| // %exp = tosa.exp %sub : (tensor<12x128x40960xf32>) -> tensor<12x128x40960xf32> |
| // %sum = tosa.reduce_sum %exp {axis = 2 : i64} : (tensor<12x128x40960xf32>) -> tensor<12x128x1xf32> |
| // %rec = tosa.reciprocal %sum : (tensor<12x128x1xf32>) -> tensor<12x128x1xf32> |
| // %mul = tosa.mul %exp, %rec {shift = 0 : i8} : (tensor<12x128x40960xf32>, tensor<12x128x1xf32>) -> tensor<12x128x40960xf32> |
| // check.expect_almost_eq_const(%mul, dense<0.0078125> : tensor<12x128x40960xf32>) : tensor<12x128x40960xf32> |
| // return |
| // } |
| |
| func.func @softmax() { |
| %cst = arith.constant 1.000000e+00 : f32 |
| %cst_0 = arith.constant 0.000000e+00 : f32 |
| %cst_1 = arith.constant -3.40282347E+38 : f32 |
| %cst_2 = arith.constant dense<2.44140625e-06> : tensor<12x128x40960xf32> |
| %cst_3 = arith.constant dense<5.000000e+00> : tensor<12x128x40960xf32> |
| %0 = util.optimization_barrier %cst_3 : tensor<12x128x40960xf32> |
| %1 = tensor.empty() : tensor<12x128xf32> |
| %2 = linalg.fill ins(%cst_1 : f32) outs(%1 : tensor<12x128xf32>) -> tensor<12x128xf32> |
| %3 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"]} ins(%0 : tensor<12x128x40960xf32>) outs(%2 : tensor<12x128xf32>) { |
| ^bb0(%arg0: f32, %arg1: f32): |
| %11 = arith.maximumf %arg0, %arg1 : f32 |
| linalg.yield %11 : f32 |
| } -> tensor<12x128xf32> |
| %4 = tensor.empty() : tensor<12x128x40960xf32> |
| %5 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%0, %3 : tensor<12x128x40960xf32>, tensor<12x128xf32>) outs(%4 : tensor<12x128x40960xf32>) { |
| ^bb0(%arg0: f32, %arg1: f32, %arg2: f32): |
| %11 = arith.subf %arg0, %arg1 : f32 |
| linalg.yield %11 : f32 |
| } -> tensor<12x128x40960xf32> |
| %6 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%5 : tensor<12x128x40960xf32>) outs(%4 : tensor<12x128x40960xf32>) { |
| ^bb0(%arg0: f32, %arg1: f32): |
| %11 = math.exp %arg0 : f32 |
| linalg.yield %11 : f32 |
| } -> tensor<12x128x40960xf32> |
| %7 = linalg.fill ins(%cst_0 : f32) outs(%1 : tensor<12x128xf32>) -> tensor<12x128xf32> |
| %8 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"]} ins(%6 : tensor<12x128x40960xf32>) outs(%7 : tensor<12x128xf32>) { |
| ^bb0(%arg0: f32, %arg1: f32): |
| %11 = arith.addf %arg0, %arg1 : f32 |
| linalg.yield %11 : f32 |
| } -> tensor<12x128xf32> |
| %9 = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"]} ins(%8 : tensor<12x128xf32>) outs(%1 : tensor<12x128xf32>) { |
| ^bb0(%arg0: f32, %arg1: f32): |
| %11 = arith.divf %cst, %arg0 : f32 |
| linalg.yield %11 : f32 |
| } -> tensor<12x128xf32> |
| %10 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%6, %9 : tensor<12x128x40960xf32>, tensor<12x128xf32>) outs(%4 : tensor<12x128x40960xf32>) { |
| ^bb0(%arg0: f32, %arg1: f32, %arg2: f32): |
| %11 = arith.mulf %arg0, %arg1 : f32 |
| linalg.yield %11 : f32 |
| } -> tensor<12x128x40960xf32> |
| check.expect_almost_eq(%10, %cst_2) : tensor<12x128x40960xf32> |
| return |
| } |