blob: 6e77f0ff4c5d0b476a63a02aa766e3fbc8e0e235 [file] [log] [blame]
# Lint as: python3
# Copyright 2019 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
from absl import app
from iree.tf.support import tf_test_utils
from iree.tf.support import tf_utils
import numpy as np
import tensorflow.compat.v2 as tf
class Conv2dModule(tf_test_utils.TestModule):
@tf_test_utils.tf_function_unit_test(input_signature=[
tf.TensorSpec([1, 4, 5, 1], tf.float32),
tf.TensorSpec([1, 1, 1, 1], tf.float32),
])
def conv2d_1451x1111_valid(self, img, kernel):
return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result")
@tf_test_utils.tf_function_unit_test(input_signature=[
tf.TensorSpec([1, 4, 5, 1], tf.float32),
tf.TensorSpec([2, 2, 1, 1], tf.float32),
])
def conv2d_1451x2211_dilated_valid(self, img, kernel):
return tf.nn.conv2d(img,
kernel, [1, 1, 1, 1],
"VALID",
dilations=[1, 2, 1, 1],
name="result")
@tf_test_utils.tf_function_unit_test(input_signature=[
tf.TensorSpec([1, 4, 5, 2], tf.float32),
tf.TensorSpec([2, 2, 2, 3], tf.float32),
])
def conv2d_1452x2223_dilated_valid(self, img, kernel):
return tf.nn.conv2d(img,
kernel, [1, 1, 1, 1],
"VALID",
dilations=[1, 2, 1, 1],
name="result")
@tf_test_utils.tf_function_unit_test(input_signature=[
tf.TensorSpec([2, 4, 5, 1], tf.float32),
tf.TensorSpec([1, 1, 1, 1], tf.float32),
])
def conv2d_2451x1111_valid(self, img, kernel):
return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result")
@tf_test_utils.tf_function_unit_test(input_signature=[
tf.TensorSpec([1, 4, 5, 1], tf.float32),
tf.TensorSpec([2, 3, 1, 1], tf.float32),
])
def conv2d_1451x2311_valid(self, img, kernel):
return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result")
@tf_test_utils.tf_function_unit_test(input_signature=[
tf.TensorSpec([1, 4, 5, 1], tf.float32),
tf.TensorSpec([2, 3, 1, 1], tf.float32),
])
def conv2d_1451x2311_same(self, img, kernel):
return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result")
@tf_test_utils.tf_function_unit_test(input_signature=[
tf.TensorSpec([2, 4, 5, 1], tf.float32),
tf.TensorSpec([2, 3, 1, 1], tf.float32),
])
def conv2d_2451x2311_same(self, img, kernel):
return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result")
@tf_test_utils.tf_function_unit_test(input_signature=[
tf.TensorSpec([1, 4, 5, 2], tf.float32),
tf.TensorSpec([3, 2, 2, 1], tf.float32),
])
def conv2d_1452x3221_same(self, img, kernel):
return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result")
@tf_test_utils.tf_function_unit_test(input_signature=[
tf.TensorSpec([1, 4, 5, 1], tf.float32),
tf.TensorSpec([1, 1, 1, 2], tf.float32),
])
def conv2d_1451x1112_same(self, img, kernel):
return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result")
@tf_test_utils.tf_function_unit_test(input_signature=[
tf.TensorSpec([1, 4, 5, 2], tf.float32),
tf.TensorSpec([1, 1, 2, 2], tf.float32),
])
def conv2d_1452x1122_same(self, img, kernel):
return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result")
@tf_test_utils.tf_function_unit_test(input_signature=[
tf.TensorSpec([1, 4, 5, 2], tf.float32),
tf.TensorSpec([2, 2, 2, 3], tf.float32),
])
def conv2d_1452x2223_same(self, img, kernel):
return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result")
@tf_test_utils.tf_function_unit_test(input_signature=[
tf.TensorSpec([1, 4, 5, 2], tf.float32),
tf.TensorSpec([2, 2, 2, 3], tf.float32),
])
def conv2d_1452x2223_valid(self, img, kernel):
return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result")
@tf_test_utils.tf_function_unit_test(input_signature=[
tf.TensorSpec([2, 4, 5, 2], tf.float32),
tf.TensorSpec([2, 2, 2, 3], tf.float32),
])
def conv2d_2452x2223_valid(self, img, kernel):
return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result")
class ConvTest(tf_test_utils.TracedModuleTestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._modules = tf_test_utils.compile_tf_module(Conv2dModule)
def main(argv):
del argv # Unused
if hasattr(tf, 'enable_v2_behavior'):
tf.enable_v2_behavior()
ConvTest.generate_unit_tests(Conv2dModule)
tf.test.main()
if __name__ == '__main__':
app.run(main)