|  | { | 
|  | "nbformat": 4, | 
|  | "nbformat_minor": 0, | 
|  | "metadata": { | 
|  | "colab": { | 
|  | "provenance": [], | 
|  | "collapsed_sections": [ | 
|  | "UUXnh11hA75x" | 
|  | ] | 
|  | }, | 
|  | "kernelspec": { | 
|  | "name": "python3", | 
|  | "display_name": "Python 3" | 
|  | }, | 
|  | "language_info": { | 
|  | "name": "python" | 
|  | } | 
|  | }, | 
|  | "cells": [ | 
|  | { | 
|  | "cell_type": "markdown", | 
|  | "source": [ | 
|  | "##### Copyright 2023 The IREE Authors" | 
|  | ], | 
|  | "metadata": { | 
|  | "id": "UUXnh11hA75x" | 
|  | } | 
|  | }, | 
|  | { | 
|  | "cell_type": "code", | 
|  | "source": [ | 
|  | "#@title Licensed under the Apache License v2.0 with LLVM Exceptions.\n", | 
|  | "# See https://llvm.org/LICENSE.txt for license information.\n", | 
|  | "# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception" | 
|  | ], | 
|  | "metadata": { | 
|  | "cellView": "form", | 
|  | "id": "FqsvmKpjBJO2" | 
|  | }, | 
|  | "execution_count": 1, | 
|  | "outputs": [] | 
|  | }, | 
|  | { | 
|  | "cell_type": "markdown", | 
|  | "source": [ | 
|  | "# <img src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/1/10/PyTorch_logo_icon.svg/640px-PyTorch_logo_icon.svg.png\" height=\"20px\"> PyTorch Ahead-of-time (AOT) export workflows using <img src=\"https://raw.githubusercontent.com/openxla/iree/main/docs/website/docs/assets/images/ghost.svg\" height=\"20px\"> IREE\n", | 
|  | "\n", | 
|  | "This notebook shows how to use [SHARK-Turbine](https://github.com/nod-ai/SHARK-Turbine) for export from a PyTorch session to [IREE](https://github.com/openxla/iree), leveraging [torch-mlir](https://github.com/llvm/torch-mlir) under the covers.\n", | 
|  | "\n", | 
|  | "SHARK-Turbine contains both a \"simple\" AOT exporter and an underlying advanced\n", | 
|  | "API for complicated models and full feature availability. This notebook shows\n", | 
|  | "some of the features available in the \"advanced\" toolkit." | 
|  | ], | 
|  | "metadata": { | 
|  | "id": "38UDc27KBPD1" | 
|  | } | 
|  | }, | 
|  | { | 
|  | "cell_type": "markdown", | 
|  | "source": [ | 
|  | "## Setup" | 
|  | ], | 
|  | "metadata": { | 
|  | "id": "jbcW5jMLK8gK" | 
|  | } | 
|  | }, | 
|  | { | 
|  | "cell_type": "code", | 
|  | "source": [ | 
|  | "%%capture\n", | 
|  | "#@title Uninstall existing packages\n", | 
|  | "#   This avoids some warnings when installing specific PyTorch packages below.\n", | 
|  | "!python -m pip uninstall -y fastai torchaudio torchdata torchtext torchvision" | 
|  | ], | 
|  | "metadata": { | 
|  | "id": "KsPubQSvCbXd" | 
|  | }, | 
|  | "execution_count": 2, | 
|  | "outputs": [] | 
|  | }, | 
|  | { | 
|  | "cell_type": "code", | 
|  | "execution_count": 3, | 
|  | "metadata": { | 
|  | "colab": { | 
|  | "base_uri": "https://localhost:8080/", | 
|  | "height": 300 | 
|  | }, | 
|  | "id": "4iJFDHbsAzo4", | 
|  | "outputId": "642f4878-b5df-4499-c682-0cace5af016c" | 
|  | }, | 
|  | "outputs": [ | 
|  | { | 
|  | "output_type": "display_data", | 
|  | "data": { | 
|  | "text/plain": [ | 
|  | "<IPython.core.display.Javascript object>" | 
|  | ], | 
|  | "application/javascript": [ | 
|  | "google.colab.output.setIframeHeight(0, true, {maxHeight: 300})" | 
|  | ] | 
|  | }, | 
|  | "metadata": {} | 
|  | }, | 
|  | { | 
|  | "output_type": "stream", | 
|  | "name": "stdout", | 
|  | "text": [ | 
|  | "Collecting shark-turbine\n", | 
|  | "  Downloading shark-turbine-0.9.1.dev3.tar.gz (60 kB)\n", | 
|  | "\u001b[?25l     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/60.2 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K     \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━\u001b[0m \u001b[32m51.2/60.2 kB\u001b[0m \u001b[31m1.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.2/60.2 kB\u001b[0m \u001b[31m1.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | 
|  | "\u001b[?25h  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", | 
|  | "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", | 
|  | "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", | 
|  | "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from shark-turbine) (1.23.5)\n", | 
|  | "Collecting iree-compiler>=20231004.665 (from shark-turbine)\n", | 
|  | "  Downloading iree_compiler-20231004.665-cp310-cp310-manylinux_2_28_x86_64.whl (57.2 MB)\n", | 
|  | "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.2/57.2 MB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | 
|  | "\u001b[?25hCollecting iree-runtime>=20231004.665 (from shark-turbine)\n", | 
|  | "  Downloading iree_runtime-20231004.665-cp310-cp310-manylinux_2_28_x86_64.whl (7.8 MB)\n", | 
|  | "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m91.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | 
|  | "\u001b[?25hRequirement already satisfied: torch>=2.1.0 in /usr/local/lib/python3.10/dist-packages (from shark-turbine) (2.1.0+cu118)\n", | 
|  | "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from iree-compiler>=20231004.665->shark-turbine) (6.0.1)\n", | 
|  | "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=2.1.0->shark-turbine) (3.12.4)\n", | 
|  | "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch>=2.1.0->shark-turbine) (4.5.0)\n", | 
|  | "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=2.1.0->shark-turbine) (1.12)\n", | 
|  | "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=2.1.0->shark-turbine) (3.2)\n", | 
|  | "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=2.1.0->shark-turbine) (3.1.2)\n", | 
|  | "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch>=2.1.0->shark-turbine) (2023.6.0)\n", | 
|  | "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=2.1.0->shark-turbine) (2.1.0)\n", | 
|  | "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=2.1.0->shark-turbine) (2.1.3)\n", | 
|  | "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=2.1.0->shark-turbine) (1.3.0)\n", | 
|  | "Building wheels for collected packages: shark-turbine\n", | 
|  | "  Building wheel for shark-turbine (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", | 
|  | "  Created wheel for shark-turbine: filename=shark_turbine-0.9.1.dev3-py3-none-any.whl size=70102 sha256=d4633a862e3a4815488be7a3b339b3aa927f1fd5637720b8e63a64ef31e1dd8f\n", | 
|  | "  Stored in directory: /root/.cache/pip/wheels/e9/78/0f/88c9d8224ef1550fe00b18a014eab5121f26264e2261f31926\n", | 
|  | "Successfully built shark-turbine\n", | 
|  | "Installing collected packages: iree-runtime, iree-compiler, shark-turbine\n", | 
|  | "Successfully installed iree-compiler-20231004.665 iree-runtime-20231004.665 shark-turbine-0.9.1.dev3\n" | 
|  | ] | 
|  | } | 
|  | ], | 
|  | "source": [ | 
|  | "#@title Install SHARK-Turbine\n", | 
|  | "\n", | 
|  | "# Limit cell height.\n", | 
|  | "from IPython.display import Javascript\n", | 
|  | "display(Javascript('''google.colab.output.setIframeHeight(0, true, {maxHeight: 300})'''))\n", | 
|  | "\n", | 
|  | "!python -m pip install shark-turbine" | 
|  | ] | 
|  | }, | 
|  | { | 
|  | "cell_type": "code", | 
|  | "source": [ | 
|  | "#@title Report version information\n", | 
|  | "!echo \"Installed SHARK-Turbine, $(python -m pip show shark_turbine | grep Version)\"\n", | 
|  | "\n", | 
|  | "!echo -e \"\\nInstalled IREE, compiler version information:\"\n", | 
|  | "!iree-compile --version\n", | 
|  | "\n", | 
|  | "import torch\n", | 
|  | "print(\"\\nInstalled PyTorch, version:\", torch.__version__)" | 
|  | ], | 
|  | "metadata": { | 
|  | "colab": { | 
|  | "base_uri": "https://localhost:8080/" | 
|  | }, | 
|  | "id": "nkVLzRpcDnVL", | 
|  | "outputId": "13d71d90-5f42-4e72-e85d-1d8137e1afda" | 
|  | }, | 
|  | "execution_count": 4, | 
|  | "outputs": [ | 
|  | { | 
|  | "output_type": "stream", | 
|  | "name": "stdout", | 
|  | "text": [ | 
|  | "Installed SHARK-Turbine, Version: 0.9.1.dev3\n", | 
|  | "\n", | 
|  | "Installed IREE, compiler version information:\n", | 
|  | "IREE (https://openxla.github.io/iree):\n", | 
|  | "  IREE compiler version 20231004.665 @ bb51f6f1a1b4ee619fb09a7396f449dadb211447\n", | 
|  | "  LLVM version 18.0.0git\n", | 
|  | "  Optimized build\n", | 
|  | "\n", | 
|  | "Installed PyTorch, version: 2.1.0+cu118\n" | 
|  | ] | 
|  | } | 
|  | ] | 
|  | }, | 
|  | { | 
|  | "cell_type": "markdown", | 
|  | "source": [ | 
|  | "## Advanced AOT toolkit examples\n", | 
|  | "\n", | 
|  | "1. Define a PyTorch program using `torch.nn.Module`\n", | 
|  | "2. Define the API and properties of that program by using `aot.CompiledModule`\n", | 
|  | "3. Export the program using `aot.export()`\n", | 
|  | "4. Compile to a deployable artifact\n", | 
|  | "  * a: By staying within a Python session\n", | 
|  | "  * b: By outputting MLIR and continuing using native tools\n", | 
|  | "\n", | 
|  | "Useful documentation:\n", | 
|  | "\n", | 
|  | "* [IREE PyTorch guide](https://iree.dev/guides/ml-frameworks/pytorch/)\n", | 
|  | "* [PyTorch Modules](https://pytorch.org/docs/stable/notes/modules.html) (`nn.Module`) as building blocks for stateful computation\n", | 
|  | "* IREE compiler and runtime [Python bindings](https://www.iree.dev/reference/bindings/python/)" | 
|  | ], | 
|  | "metadata": { | 
|  | "id": "1Mi3YR75LBxl" | 
|  | } | 
|  | }, | 
|  | { | 
|  | "cell_type": "code", | 
|  | "source": [ | 
|  | "#@title 1. Define a program using `torch.nn.Module`\n", | 
|  | "torch.manual_seed(0)\n", | 
|  | "\n", | 
|  | "class LinearModule(torch.nn.Module):\n", | 
|  | "  def __init__(self, in_features, out_features):\n", | 
|  | "    super().__init__()\n", | 
|  | "    self.weight = torch.nn.Parameter(torch.randn(in_features, out_features))\n", | 
|  | "    self.bias = torch.nn.Parameter(torch.randn(out_features))\n", | 
|  | "\n", | 
|  | "  def forward(self, input):\n", | 
|  | "    return (input @ self.weight) + self.bias\n", | 
|  | "\n", | 
|  | "linear_module = LinearModule(4, 3)" | 
|  | ], | 
|  | "metadata": { | 
|  | "id": "oPdjrmPZMNz6" | 
|  | }, | 
|  | "execution_count": 5, | 
|  | "outputs": [] | 
|  | }, | 
|  | { | 
|  | "cell_type": "code", | 
|  | "source": [ | 
|  | "#@title 2. Define the API and properties of that program by using aot.CompiledModule\n", | 
|  | "\n", | 
|  | "import shark_turbine.aot as aot\n", | 
|  | "\n", | 
|  | "example_weight = torch.randn(4, 3)\n", | 
|  | "example_bias = torch.randn(3)\n", | 
|  | "\n", | 
|  | "class CompiledLinearModule(aot.CompiledModule):\n", | 
|  | "  params = aot.export_parameters(linear_module, mutable=True)\n", | 
|  | "  compute = aot.jittable(linear_module.forward)\n", | 
|  | "\n", | 
|  | "  def main(self, x=aot.AbstractTensor(4)):\n", | 
|  | "    return self.compute(x)\n", | 
|  | "\n", | 
|  | "  def get_weight(self):\n", | 
|  | "    return self.params[\"weight\"]\n", | 
|  | "\n", | 
|  | "  def set_weight(self, weight=aot.abstractify(example_weight)):\n", | 
|  | "    self.params[\"weight\"] = weight\n", | 
|  | "\n", | 
|  | "  def get_bias(self):\n", | 
|  | "    return self.params[\"bias\"]\n", | 
|  | "\n", | 
|  | "  def set_bias(self, bias=aot.abstractify(example_bias)):\n", | 
|  | "    self.params[\"bias\"] = bias" | 
|  | ], | 
|  | "metadata": { | 
|  | "id": "Ua3tNtUIozoa" | 
|  | }, | 
|  | "execution_count": 6, | 
|  | "outputs": [] | 
|  | }, | 
|  | { | 
|  | "cell_type": "code", | 
|  | "source": [ | 
|  | "#@title 3. Export the program using `aot.export()`\n", | 
|  | "\n", | 
|  | "example_arg = torch.randn(4)\n", | 
|  | "export_output = aot.export(CompiledLinearModule, example_arg)" | 
|  | ], | 
|  | "metadata": { | 
|  | "id": "eK2fWVfiSQ8f" | 
|  | }, | 
|  | "execution_count": 7, | 
|  | "outputs": [] | 
|  | }, | 
|  | { | 
|  | "cell_type": "code", | 
|  | "source": [ | 
|  | "#@title 4a. Compile fully to a deployable artifact, in our existing Python session\n", | 
|  | "\n", | 
|  | "# Staying in Python gives the API a chance to reuse memory, improving\n", | 
|  | "# performance when compiling large programs.\n", | 
|  | "\n", | 
|  | "compiled_binary = export_output.compile(save_to=None)\n", | 
|  | "\n", | 
|  | "# Use the IREE runtime API to test the compiled program.\n", | 
|  | "import numpy as np\n", | 
|  | "import iree.runtime as ireert\n", | 
|  | "\n", | 
|  | "config = ireert.Config(\"local-task\")\n", | 
|  | "vm_module = ireert.load_vm_module(\n", | 
|  | "    ireert.VmModule.wrap_buffer(config.vm_instance, compiled_binary.map_memory()),\n", | 
|  | "    config,\n", | 
|  | ")\n", | 
|  | "\n", | 
|  | "input = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32)\n", | 
|  | "result = vm_module.main(input)\n", | 
|  | "print(result.to_host())" | 
|  | ], | 
|  | "metadata": { | 
|  | "colab": { | 
|  | "base_uri": "https://localhost:8080/" | 
|  | }, | 
|  | "id": "eMRNdFdos900", | 
|  | "outputId": "465d47e1-45a5-4f88-bcf9-33ceb5d417e7" | 
|  | }, | 
|  | "execution_count": 8, | 
|  | "outputs": [ | 
|  | { | 
|  | "output_type": "stream", | 
|  | "name": "stdout", | 
|  | "text": [ | 
|  | "[ 1.4178504 -1.2343317 -7.4767947]\n" | 
|  | ] | 
|  | } | 
|  | ] | 
|  | }, | 
|  | { | 
|  | "cell_type": "code", | 
|  | "source": [ | 
|  | "#@title 4b. Output MLIR then continue from Python or native tools later\n", | 
|  | "\n", | 
|  | "# Leaving Python allows for file system checkpointing and grants access to\n", | 
|  | "# native development workflows.\n", | 
|  | "\n", | 
|  | "mlir_file_path = \"/tmp/linear_module_pytorch.mlirbc\"\n", | 
|  | "vmfb_file_path = \"/tmp/linear_module_pytorch_llvmcpu.vmfb\"\n", | 
|  | "\n", | 
|  | "export_output.print_readable()\n", | 
|  | "export_output.save_mlir(mlir_file_path)\n", | 
|  | "\n", | 
|  | "!iree-compile --iree-input-type=torch --iree-hal-target-backends=llvm-cpu {mlir_file_path} -o {vmfb_file_path}\n", | 
|  | "!iree-run-module --module={vmfb_file_path} --device=local-task --input=\"4xf32=[1.0, 2.0, 3.0, 4.0]\"" | 
|  | ], | 
|  | "metadata": { | 
|  | "colab": { | 
|  | "base_uri": "https://localhost:8080/" | 
|  | }, | 
|  | "id": "0AdkXY8VNL2-", | 
|  | "outputId": "52995990-0d11-46f3-b538-98a0f1e94473" | 
|  | }, | 
|  | "execution_count": 9, | 
|  | "outputs": [ | 
|  | { | 
|  | "output_type": "stream", | 
|  | "name": "stdout", | 
|  | "text": [ | 
|  | "module @compiled_linear {\n", | 
|  | "  util.global private mutable @_params.weight {inlining_policy = #util.inline.never} = dense<[[1.54099607, -0.293428898, -2.17878938], [0.568431258, -1.08452237, -1.39859545], [0.403346837, 0.838026344, -0.719257593], [-0.403343529, -0.596635341, 0.182036489]]> : tensor<4x3xf32>\n", | 
|  | "  util.global private mutable @_params.bias {inlining_policy = #util.inline.never} = dense<[-0.856674611, 1.10060418, -1.07118738]> : tensor<3xf32>\n", | 
|  | "  func.func @main(%arg0: tensor<4xf32>) -> tensor<3xf32> attributes {torch.args_schema = \"[1, {\\22type\\22: \\22builtins.tuple\\22, \\22context\\22: \\22null\\22, \\22children_spec\\22: [{\\22type\\22: \\22builtins.list\\22, \\22context\\22: \\22null\\22, \\22children_spec\\22: [{\\22type\\22: null, \\22context\\22: null, \\22children_spec\\22: []}]}, {\\22type\\22: \\22builtins.dict\\22, \\22context\\22: \\22[]\\22, \\22children_spec\\22: []}]}]\", torch.return_schema = \"[1, {\\22type\\22: null, \\22context\\22: null, \\22children_spec\\22: []}]\"} {\n", | 
|  | "    %0 = torch_c.from_builtin_tensor %arg0 : tensor<4xf32> -> !torch.vtensor<[4],f32>\n", | 
|  | "    %1 = call @forward(%0) : (!torch.vtensor<[4],f32>) -> !torch.vtensor<[3],f32>\n", | 
|  | "    %2 = torch_c.to_builtin_tensor %1 : !torch.vtensor<[3],f32> -> tensor<3xf32>\n", | 
|  | "    return %2 : tensor<3xf32>\n", | 
|  | "  }\n", | 
|  | "  func.func private @forward(%arg0: !torch.vtensor<[4],f32>) -> !torch.vtensor<[3],f32> {\n", | 
|  | "    %int0 = torch.constant.int 0\n", | 
|  | "    %0 = torch.aten.unsqueeze %arg0, %int0 : !torch.vtensor<[4],f32>, !torch.int -> !torch.vtensor<[1,4],f32>\n", | 
|  | "    %_params.weight = util.global.load @_params.weight : tensor<4x3xf32>\n", | 
|  | "    %1 = torch_c.from_builtin_tensor %_params.weight : tensor<4x3xf32> -> !torch.vtensor<[4,3],f32>\n", | 
|  | "    %2 = torch.aten.mm %0, %1 : !torch.vtensor<[1,4],f32>, !torch.vtensor<[4,3],f32> -> !torch.vtensor<[1,3],f32>\n", | 
|  | "    %int0_0 = torch.constant.int 0\n", | 
|  | "    %3 = torch.aten.squeeze.dim %2, %int0_0 : !torch.vtensor<[1,3],f32>, !torch.int -> !torch.vtensor<[3],f32>\n", | 
|  | "    %_params.bias = util.global.load @_params.bias : tensor<3xf32>\n", | 
|  | "    %4 = torch_c.from_builtin_tensor %_params.bias : tensor<3xf32> -> !torch.vtensor<[3],f32>\n", | 
|  | "    %int1 = torch.constant.int 1\n", | 
|  | "    %5 = torch.aten.add.Tensor %3, %4, %int1 : !torch.vtensor<[3],f32>, !torch.vtensor<[3],f32>, !torch.int -> !torch.vtensor<[3],f32>\n", | 
|  | "    return %5 : !torch.vtensor<[3],f32>\n", | 
|  | "  }\n", | 
|  | "  func.func @get_weight() -> tensor<4x3xf32> attributes {torch.return_schema = \"[1, {\\22type\\22: null, \\22context\\22: null, \\22children_spec\\22: []}]\"} {\n", | 
|  | "    %_params.weight = util.global.load @_params.weight : tensor<4x3xf32>\n", | 
|  | "    return %_params.weight : tensor<4x3xf32>\n", | 
|  | "  }\n", | 
|  | "  func.func @set_weight(%arg0: tensor<4x3xf32>) attributes {torch.args_schema = \"[1, {\\22type\\22: \\22builtins.tuple\\22, \\22context\\22: \\22null\\22, \\22children_spec\\22: [{\\22type\\22: \\22builtins.list\\22, \\22context\\22: \\22null\\22, \\22children_spec\\22: [{\\22type\\22: null, \\22context\\22: null, \\22children_spec\\22: []}]}, {\\22type\\22: \\22builtins.dict\\22, \\22context\\22: \\22[]\\22, \\22children_spec\\22: []}]}]\"} {\n", | 
|  | "    util.global.store %arg0, @_params.weight : tensor<4x3xf32>\n", | 
|  | "    return\n", | 
|  | "  }\n", | 
|  | "  func.func @get_bias() -> tensor<3xf32> attributes {torch.return_schema = \"[1, {\\22type\\22: null, \\22context\\22: null, \\22children_spec\\22: []}]\"} {\n", | 
|  | "    %_params.bias = util.global.load @_params.bias : tensor<3xf32>\n", | 
|  | "    return %_params.bias : tensor<3xf32>\n", | 
|  | "  }\n", | 
|  | "  func.func @set_bias(%arg0: tensor<3xf32>) attributes {torch.args_schema = \"[1, {\\22type\\22: \\22builtins.tuple\\22, \\22context\\22: \\22null\\22, \\22children_spec\\22: [{\\22type\\22: \\22builtins.list\\22, \\22context\\22: \\22null\\22, \\22children_spec\\22: [{\\22type\\22: null, \\22context\\22: null, \\22children_spec\\22: []}]}, {\\22type\\22: \\22builtins.dict\\22, \\22context\\22: \\22[]\\22, \\22children_spec\\22: []}]}]\"} {\n", | 
|  | "    util.global.store %arg0, @_params.bias : tensor<3xf32>\n", | 
|  | "    return\n", | 
|  | "  }\n", | 
|  | "}\n" | 
|  | ] | 
|  | } | 
|  | ] | 
|  | } | 
|  | ] | 
|  | } |