blob: 9b29d693188df215ac0541f74542bacfe7e3f52f [file] [log] [blame]
# Lint as: python3
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test matrix ops via einsum"""
from pyiree.tf.support import tf_test_utils
from pyiree.tf.support import tf_utils
import tensorflow.compat.v2 as tf
LEFT_DIM = 6
INNER_DIM = 3
RIGHT_DIM = 6
BATCH_DIM = 8
class EinsumDynamicModule(tf.Module):
@tf.function(input_signature=[
tf.TensorSpec([None, None], tf.float32),
])
def einsum_dynamic_dim_identity(self, x):
return tf.einsum('ij', x)
@tf.function(input_signature=[
tf.TensorSpec([None, None, None], tf.float32),
])
def einsum_dynamic_rank_identity(self, x):
return tf.einsum('...', x)
@tf.function(input_signature=[
tf.TensorSpec([None, LEFT_DIM, RIGHT_DIM], tf.float32),
])
def einsum_dynamic_dim_transpose(self, x):
return tf.einsum('bij -> bji', x)
@tf.function(input_signature=[
tf.TensorSpec([None, None, LEFT_DIM, RIGHT_DIM], tf.float32),
])
def einsum_dynamic_rank_diag(self, x):
return tf.einsum('...ii -> ...i', x)
@tf.function(input_signature=[
tf.TensorSpec([None, None, LEFT_DIM, RIGHT_DIM], tf.float32),
])
def einsum_dynamic_dim_sum(self, x):
return tf.einsum('abij -> ab', x)
@tf.function(input_signature=[
tf.TensorSpec([None, None], tf.float32),
tf.TensorSpec([None, None], tf.float32),
])
def einsum_dynamic_dim_matmul(self, lhs, rhs):
return tf.einsum('ij, jk -> ik', lhs, rhs)
@tf.function(input_signature=[
tf.TensorSpec([None, LEFT_DIM, INNER_DIM], tf.float32),
tf.TensorSpec([INNER_DIM, RIGHT_DIM], tf.float32),
])
def einsum_dynamic_dim_lhs_batch(self, lhs, rhs):
return tf.einsum('bij, jk -> bik', lhs, rhs)
@tf.function(input_signature=[
tf.TensorSpec([None, None, 8, 6], tf.float32),
tf.TensorSpec([12, 6, 4], tf.float32),
])
def einsum_dynamic_rank_split_heads(self, seq, weights):
# l: seq_len, m: d_model, h: num_heads, d: attention_depth
return tf.einsum('...lm, hmd -> ...hld', seq, weights)
class EinsumDynamicTest(tf_test_utils.TracedModuleTestCase):
def __init__(self, *args, **kwargs):
super(EinsumDynamicTest, self).__init__(*args, **kwargs)
self._modules = tf_test_utils.compile_tf_module(EinsumDynamicModule)
# yapf: disable
def test_einsum_dynamic_dim_identity(self):
def einsum_dynamic_dim_identity(module):
module.einsum_dynamic_dim_identity(
tf_utils.ndarange([LEFT_DIM, RIGHT_DIM]))
self.compare_backends(einsum_dynamic_dim_identity, self._modules)
def test_einsum_dynamic_rank_identity(self):
def einsum_dynamic_rank_identity(module):
module.einsum_dynamic_rank_identity(
tf_utils.ndarange([BATCH_DIM, LEFT_DIM, RIGHT_DIM]))
self.compare_backends(einsum_dynamic_rank_identity, self._modules)
def test_einsum_dynamic_dim_transpose(self):
def einsum_dynamic_dim_transpose(module):
module.einsum_dynamic_dim_transpose(
tf_utils.ndarange([BATCH_DIM, LEFT_DIM, RIGHT_DIM]))
self.compare_backends(einsum_dynamic_dim_transpose, self._modules)
def test_einsum_dynamic_rank_diag(self):
def einsum_dynamic_rank_diag(module):
module.einsum_dynamic_rank_diag(
tf_utils.ndarange([BATCH_DIM, BATCH_DIM, LEFT_DIM, RIGHT_DIM]))
self.compare_backends(einsum_dynamic_rank_diag, self._modules)
def test_einsum_dynamic_dim_sum(self):
def einsum_dynamic_dim_sum(module):
module.einsum_dynamic_dim_sum(
tf_utils.ndarange([BATCH_DIM, BATCH_DIM, LEFT_DIM, RIGHT_DIM]))
self.compare_backends(einsum_dynamic_dim_sum, self._modules)
def test_einsum_dynamic_dim_matmul(self):
def einsum_dynamic_dim_matmul(module):
module.einsum_dynamic_dim_matmul(
tf_utils.ndarange([LEFT_DIM, INNER_DIM]),
tf_utils.ndarange([INNER_DIM, RIGHT_DIM]))
self.compare_backends(einsum_dynamic_dim_matmul, self._modules)
def test_einsum_dynamic_dim_lhs_batch(self):
def einsum_dynamic_dim_lhs_batch(module):
module.einsum_dynamic_dim_lhs_batch(
tf_utils.ndarange([BATCH_DIM, LEFT_DIM, INNER_DIM]),
tf_utils.ndarange([INNER_DIM, RIGHT_DIM]))
self.compare_backends(einsum_dynamic_dim_lhs_batch, self._modules)
def test_einsum_dynamic_rank_split_heads(self):
def einsum_dynamic_rank_split_heads(module):
module.einsum_dynamic_rank_split_heads(
tf_utils.ndarange([BATCH_DIM, BATCH_DIM, 8, 6]),
tf_utils.ndarange([12, 6, 4]))
self.compare_backends(einsum_dynamic_rank_split_heads, self._modules)
# yapf: enable
if __name__ == "__main__":
if hasattr(tf, "enable_v2_behavior"):
tf.enable_v2_behavior()
tf.test.main()