blob: 9e9e6b03996ef9287af0e328627b7392790b3445 [file] [log] [blame]
# Copyright 2022 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
################################################################################
# #
# Benchmark models from Tensorflow #
# #
# Each module specification should be a list containing alternating keys and #
# values. The fields are: NAME, TAGS, SOURCE, ENTRY_FUNCTION, and #
# FUNCTION_INPUTS. See the iree_benchmark_suite definition for details #
# about these fields. Note that these must be quoted when used as arguments. #
# #
################################################################################
set(MINILM_L12_H384_UNCASED_INT32_SEQLEN128_MODULE
NAME
"MiniLML12H384Uncased"
TAGS
"int32,seqlen128"
SOURCE
# Converted from https://huggingface.co/microsoft/MiniLM-L12-H384-uncased/commit/44acabbec0ef496f6dbc93adadea57f376b7c0ec
"https://storage.googleapis.com/iree-model-artifacts/minilm-l12-h384-uncased-seqlen128-tf-model.tar.gz"
ENTRY_FUNCTION
"predict"
IMPORT_FLAGS
"--tf-savedmodel-exported-names=predict"
FUNCTION_INPUTS
"1x128xi32,1x128xi32,1x128xi32"
)
set(RESNET50_TF_FP32_MODULE
NAME
"Resnet50Tf"
TAGS
"fp32"
SOURCE
# Derived from https://github.com/keras-team/keras/blob/v2.10.0/keras/applications/resnet.py.
"https://storage.googleapis.com/iree-model-artifacts/resnet50-tf-model.tar.gz"
ENTRY_FUNCTION
"forward"
IMPORT_FLAGS
"--tf-savedmodel-exported-names=forward"
FUNCTION_INPUTS
"1x224x224x3xf32"
)
set(BERT_FOR_MASKED_LM_FP32_SEQLEN512_MODULE
NAME
"BertForMaskedLM"
TAGS
"fp32,seqlen512"
SOURCE
# Derived from https://huggingface.co/transformers/v3.0.2/model_doc/bert.html#tfbertformaskedlm.
"https://storage.googleapis.com/iree-model-artifacts/bert-for-masked-lm-seq512-tf-model.tar.gz"
ENTRY_FUNCTION
"forward"
IMPORT_FLAGS
"--tf-savedmodel-exported-names=forward"
FUNCTION_INPUTS
"1x512xi32,1x512xi32"
)
# This is the model used in the MLPerf Inference Suite.
set(BERT_LARGE_TF_FP32_SEQLEN384_MODULE
NAME
"BertLargeTf"
TAGS
"fp32,seqlen384"
SOURCE
# Derived from https://github.com/mlcommons/inference/tree/master/language/bert
# Instructions on how to regenerate the model: https://gist.github.com/mariecwhite/e61ccebd979d98d097946ac7725bcc29
"https://storage.googleapis.com/iree-model-artifacts/bert-large-seq384-tf-model.tar.gz"
ENTRY_FUNCTION
"serving_default"
IMPORT_FLAGS
"--tf-import-type=savedmodel_v1"
"--tf-savedmodel-exported-names=serving_default"
FUNCTION_INPUTS
"1x384xi32,1x384xi32,1x384xi32"
)
set(EFFICIENTNET_V2_S_TF_FP32_MODULE
NAME
"EfficientNetV2STF"
TAGS
"fp32"
SOURCE
# Derived from https://github.com/keras-team/keras/blob/v2.10.0/keras/applications/efficientnet_v2.py.
"https://storage.googleapis.com/iree-model-artifacts/efficientnet-v2-s-tf-model.tar.gz"
ENTRY_FUNCTION
"forward"
IMPORT_FLAGS
"--tf-savedmodel-exported-names=forward"
FUNCTION_INPUTS
"1x384x384x3xf32"
)
################################################################################
# Add benchmarks for all platforms. #
################################################################################
include(linux-x86_64.cmake)
include(linux-cuda.cmake)