| # Copyright 2022 The IREE Authors |
| # |
| # Licensed under the Apache License v2.0 with LLVM Exceptions. |
| # See https://llvm.org/LICENSE.txt for license information. |
| # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| |
| |
| ################################################################################ |
| # # |
| # Benchmark models from Tensorflow # |
| # # |
| # Each module specification should be a list containing alternating keys and # |
| # values. The fields are: NAME, TAGS, SOURCE, ENTRY_FUNCTION, and # |
| # FUNCTION_INPUTS. See the iree_benchmark_suite definition for details # |
| # about these fields. Note that these must be quoted when used as arguments. # |
| # # |
| ################################################################################ |
| |
| set(MINILM_L12_H384_UNCASED_INT32_SEQLEN128_MODULE |
| NAME |
| "MiniLML12H384Uncased" |
| TAGS |
| "int32,seqlen128" |
| SOURCE |
| # Converted from https://huggingface.co/microsoft/MiniLM-L12-H384-uncased/commit/44acabbec0ef496f6dbc93adadea57f376b7c0ec |
| "https://storage.googleapis.com/iree-model-artifacts/minilm-l12-h384-uncased-seqlen128-tf-model.tar.gz" |
| ENTRY_FUNCTION |
| "predict" |
| IMPORT_FLAGS |
| "--tf-savedmodel-exported-names=predict" |
| FUNCTION_INPUTS |
| "1x128xi32,1x128xi32,1x128xi32" |
| ) |
| |
| set(RESNET50_TF_FP32_MODULE |
| NAME |
| "Resnet50Tf" |
| TAGS |
| "fp32" |
| SOURCE |
| # Derived from https://github.com/keras-team/keras/blob/v2.10.0/keras/applications/resnet.py. |
| "https://storage.googleapis.com/iree-model-artifacts/resnet50-tf-model.tar.gz" |
| ENTRY_FUNCTION |
| "forward" |
| IMPORT_FLAGS |
| "--tf-savedmodel-exported-names=forward" |
| FUNCTION_INPUTS |
| "1x224x224x3xf32" |
| ) |
| |
| set(BERT_FOR_MASKED_LM_FP32_SEQLEN512_MODULE |
| NAME |
| "BertForMaskedLM" |
| TAGS |
| "fp32,seqlen512" |
| SOURCE |
| # Derived from https://huggingface.co/transformers/v3.0.2/model_doc/bert.html#tfbertformaskedlm. |
| "https://storage.googleapis.com/iree-model-artifacts/bert-for-masked-lm-seq512-tf-model.tar.gz" |
| ENTRY_FUNCTION |
| "forward" |
| IMPORT_FLAGS |
| "--tf-savedmodel-exported-names=forward" |
| FUNCTION_INPUTS |
| "1x512xi32,1x512xi32" |
| ) |
| |
| # This is the model used in the MLPerf Inference Suite. |
| set(BERT_LARGE_TF_FP32_SEQLEN384_MODULE |
| NAME |
| "BertLargeTf" |
| TAGS |
| "fp32,seqlen384" |
| SOURCE |
| # Derived from https://github.com/mlcommons/inference/tree/master/language/bert |
| # Instructions on how to regenerate the model: https://gist.github.com/mariecwhite/e61ccebd979d98d097946ac7725bcc29 |
| "https://storage.googleapis.com/iree-model-artifacts/bert-large-seq384-tf-model.tar.gz" |
| ENTRY_FUNCTION |
| "serving_default" |
| IMPORT_FLAGS |
| "--tf-import-type=savedmodel_v1" |
| "--tf-savedmodel-exported-names=serving_default" |
| FUNCTION_INPUTS |
| "1x384xi32,1x384xi32,1x384xi32" |
| ) |
| |
| set(EFFICIENTNET_V2_S_TF_FP32_MODULE |
| NAME |
| "EfficientNetV2STF" |
| TAGS |
| "fp32" |
| SOURCE |
| # Derived from https://github.com/keras-team/keras/blob/v2.10.0/keras/applications/efficientnet_v2.py. |
| "https://storage.googleapis.com/iree-model-artifacts/efficientnet-v2-s-tf-model.tar.gz" |
| ENTRY_FUNCTION |
| "forward" |
| IMPORT_FLAGS |
| "--tf-savedmodel-exported-names=forward" |
| FUNCTION_INPUTS |
| "1x384x384x3xf32" |
| ) |
| |
| ################################################################################ |
| # Add benchmarks for all platforms. # |
| ################################################################################ |
| include(linux-x86_64.cmake) |
| include(linux-cuda.cmake) |