blob: cde2fd61a5a96dd78c4b739b58b1c6c8b4a56882 [file] [log] [blame]
# Lint as: python3
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test broadcasting support."""
from pyiree.tf.support import tf_test_utils
import tensorflow.compat.v2 as tf
class BroadcastingModule(tf.Module):
@tf.function(input_signature=[
tf.TensorSpec([None], tf.float32),
tf.TensorSpec([None], tf.float32),
])
def add(self, lhs, rhs):
return lhs + rhs
@tf_test_utils.compile_module(BroadcastingModule)
class BroadcastingTest(tf_test_utils.SavedModelTestCase):
def test_add_same_shape(self):
m = self.get_module()
dst = m.add(tf.random.uniform([4]), tf.random.uniform([4]))
dst.print().assert_all_close()
# TODO(silvasean): Make these work.
# def test_add_broadcast_lhs(self):
# m = self.get_module()
# dst = m.add(tf.random.uniform([1]), tf.random.uniform([4]))
# dst.print().assert_all_close()
#
# def test_add_broadcast_rhs(self):
# m = self.get_module()
# dst = m.add(tf.random.uniform([4]), tf.random.uniform([1]))
# dst.print().assert_all_close()
if __name__ == "__main__":
if hasattr(tf, "enable_v2_behavior"):
tf.enable_v2_behavior()
tf.test.main()