blob: 9c87b7bfcc52145c7af33a4dbb456ab58ea5a73a [file] [log] [blame]
# Lint as: python3
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test matrix ops."""
from pyiree.tf.support import tf_test_utils
from pyiree.tf.support import tf_utils
import tensorflow.compat.v2 as tf
class MatrixOpsDynamicModule(tf.Module):
@tf.function(input_signature=[
tf.TensorSpec([None, None, 4, 2], tf.float32),
tf.TensorSpec([None, None, 2, 4], tf.float32),
])
def matmul_high_rank_batch(self, lhs, rhs):
return tf.matmul(lhs, rhs)
@tf.function(input_signature=[
tf.TensorSpec([None, None, None], tf.float32),
tf.TensorSpec([None, None, None], tf.float32),
])
def matmul_dynamic(self, lhs, rhs):
return tf.matmul(lhs, rhs)
@tf.function(input_signature=[
tf.TensorSpec([None, None, None], tf.float32),
tf.TensorSpec([None, None], tf.float32),
])
def matmul_dynamic_lhs_batch(self, lhs, rhs):
return tf.matmul(lhs, rhs)
@tf_test_utils.compile_module(MatrixOpsDynamicModule)
class MatrixOpsDynamicTest(tf_test_utils.TracedModuleTestCase):
def test_matmul_high_rank_batch(self):
def matmul_high_rank_batch(module):
module.matmul_high_rank_batch(
tf_utils.uniform([1, 7, 4, 2]), tf_utils.uniform([7, 1, 2, 4]))
self.compare_backends(matmul_high_rank_batch)
def test_matmul_dynamic_matching_batch(self):
def matmul_dynamic_matching_batch(module):
module.matmul_dynamic(
tf_utils.uniform([2, 2, 3]), tf_utils.uniform([2, 3, 4]))
self.compare_backends(matmul_dynamic_matching_batch)
def test_matmul_dynamic_broadcast_lhs(self):
def matmul_dynamic_broadcast_lhs(module):
module.matmul_dynamic(
tf_utils.uniform([1, 2, 3]), tf_utils.uniform([2, 3, 4]))
self.compare_backends(matmul_dynamic_broadcast_lhs)
def test_matmul_dynamic_broadcast_rhs(self):
def matmul_dynamic_broadcast_rhs(module):
module.matmul_dynamic(
tf_utils.uniform([2, 2, 3]), tf_utils.uniform([1, 3, 4]))
self.compare_backends(matmul_dynamic_broadcast_rhs)
def test_matmul_dynamic_rank_broadcasting(self):
def matmul_dynamic_rank_broadcasting(module):
module.matmul_dynamic_lhs_batch(
tf_utils.uniform([7, 2, 3]), tf_utils.uniform([3, 4]))
self.compare_backends(matmul_dynamic_rank_broadcasting)
if __name__ == "__main__":
if hasattr(tf, "enable_v2_behavior"):
tf.enable_v2_behavior()
tf.test.main()