blob: 4d0ee596c6201c455c1af200ccafbc49d50f9460 [file] [log] [blame]
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import importlib
import os
import sys
import tempfile
from pyiree import binding as binding
# Determine if compiled with tf_interop support.
if not hasattr(binding, "tf_interop"):
print("Not running tests because tf_interop support not compiled")
sys.exit(0)
# Dynamically import tensorflow.
try:
# Use a dynamic import so as to avoid hermetic dependency analysis
# (i.e. we only want the tensorflow from the environment).
tf = importlib.import_module("tensorflow")
# Just in case if linked against a pre-V2 defaulted version.
tf.enable_v2_behavior()
tf = tf.compat.v2
except ImportError:
print("Not running tests because tensorflow is not available")
sys.exit(0)
class StatefulModule(tf.Module):
def __init__(self):
self.v = tf.Variable([4], dtype=tf.float32)
@tf.function(input_signature=[
tf.TensorSpec([4], tf.float32),
tf.TensorSpec([4], tf.float32)
])
def add(self, a, b):
return tf.tanh(self.v * a + b)
class RuntimeTest(tf.test.TestCase):
def testLoadSavedModelToXlaPipeline(self):
"""Tests that a basic saved model to XLA workflow grossly functions.
This is largely here to verify that everything is linked in that needs to be
and that there are not no-ops, etc.
"""
with tempfile.TemporaryDirectory() as temp_dir:
sm_dir = os.path.join(temp_dir, "simple.sm")
print("Saving to:", sm_dir)
my_module = StatefulModule()
options = tf.saved_model.SaveOptions(save_debug_info=True)
tf.saved_model.save(my_module, sm_dir, options=options)
# Load it up.
ctx = binding.compiler.CompilerContext()
input_module = binding.tf_interop.load_saved_model(ctx, sm_dir)
input_asm = input_module.to_asm()
print("LOADED ASM:\n", input_asm)
# Should have out exported name and have executor islands.
self.assertRegex(input_asm,
r"""tf_saved_model.exported_names = \["add"\]""")
self.assertRegex(input_asm, r"""tf_executor\.island""")
# Run the necessary lowering passes. Makes sure that these are linked in.
input_module.run_pass_pipeline([
"tf-executor-graph-pruning",
"tf-standard-pipeline",
"canonicalize",
])
lowered_asm = input_module.to_asm()
print("LOWERED ASM:\n", lowered_asm)
# Should have collapsed all executor islands.
self.assertNotRegex(lowered_asm, r"""tf_executor\.island""")
# And legalize to XLA.
input_module.run_pass_pipeline([
"xla-legalize-tf",
])
xla_asm = input_module.to_asm()
print("XLA ASM:", xla_asm)
self.assertRegex(xla_asm, "xla_hlo.tanh")
if __name__ == "__main__":
tf.test.main()