| // half - IEEE 754-based half-precision floating point library. |
| // |
| // Copyright (c) 2012-2017 Christian Rau <rauy@users.sourceforge.net> |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| // SOFTWARE. |
| |
| // Version 1.12.0 |
| |
| /// \file |
| /// Main header file for half precision functionality. |
| |
| #ifndef HALF_HALF_HPP |
| #define HALF_HALF_HPP |
| |
| /// Combined gcc version number. |
| #define HALF_GNUC_VERSION (__GNUC__*100+__GNUC_MINOR__) |
| |
| //check C++11 language features |
| #if defined(__clang__) //clang |
| #if __has_feature(cxx_static_assert) && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) |
| #define HALF_ENABLE_CPP11_STATIC_ASSERT 1 |
| #endif |
| #if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR) |
| #define HALF_ENABLE_CPP11_CONSTEXPR 1 |
| #endif |
| // Do not use NOEXCEPT. Not approved for google3 yet. |
| // #if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT) |
| #if 0 |
| #define HALF_ENABLE_CPP11_NOEXCEPT 1 |
| #endif |
| // Do not use user literals. Not approved for google3 yet. |
| // #if __has_feature(cxx_user_literals) && !defined(HALF_ENABLE_CPP11_USER_LITERALS) |
| #if 0 |
| #define HALF_ENABLE_CPP11_USER_LITERALS 1 |
| #endif |
| #if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && !defined(HALF_ENABLE_CPP11_LONG_LONG) |
| #define HALF_ENABLE_CPP11_LONG_LONG 1 |
| #endif |
| /*#elif defined(__INTEL_COMPILER) |
| //Intel C++ #if __INTEL_COMPILER >= 1100 && |
| !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) ???????? #define |
| HALF_ENABLE_CPP11_STATIC_ASSERT 1 #endif #if __INTEL_COMPILER >= 1300 && |
| !defined(HALF_ENABLE_CPP11_CONSTEXPR) ???????? #define |
| HALF_ENABLE_CPP11_CONSTEXPR 1 #endif #if __INTEL_COMPILER >= 1300 && |
| !defined(HALF_ENABLE_CPP11_NOEXCEPT) ???????? #define |
| HALF_ENABLE_CPP11_NOEXCEPT 1 #endif #if __INTEL_COMPILER >= 1100 && |
| !defined(HALF_ENABLE_CPP11_LONG_LONG) ???????? #define |
| HALF_ENABLE_CPP11_LONG_LONG 1 #endif*/ |
| #elif defined(__GNUC__) //gcc |
| #if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L |
| #if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) |
| #define HALF_ENABLE_CPP11_STATIC_ASSERT 1 |
| #endif |
| #if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR) |
| #define HALF_ENABLE_CPP11_CONSTEXPR 1 |
| #endif |
| #if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT) |
| #define HALF_ENABLE_CPP11_NOEXCEPT 1 |
| #endif |
| #if HALF_GNUC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS) |
| #define HALF_ENABLE_CPP11_USER_LITERALS 1 |
| #endif |
| #if !defined(HALF_ENABLE_CPP11_LONG_LONG) |
| #define HALF_ENABLE_CPP11_LONG_LONG 1 |
| #endif |
| #endif |
| #elif defined(_MSC_VER) //Visual C++ |
| #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_CONSTEXPR) |
| #define HALF_ENABLE_CPP11_CONSTEXPR 1 |
| #endif |
| #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_NOEXCEPT) |
| #define HALF_ENABLE_CPP11_NOEXCEPT 1 |
| #endif |
| #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_USER_LITERALS) |
| #define HALF_ENABLE_CPP11_USER_LITERALS 1 |
| #endif |
| #if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) |
| #define HALF_ENABLE_CPP11_STATIC_ASSERT 1 |
| #endif |
| #if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG) |
| #define HALF_ENABLE_CPP11_LONG_LONG 1 |
| #endif |
| #define HALF_POP_WARNINGS 1 |
| #pragma warning(push) |
| #pragma warning(disable : 4099 4127 4146) // struct vs class, constant in if, |
| // negative unsigned |
| #endif |
| |
| //check C++11 library features |
| #include <utility> |
| #if defined(_LIBCPP_VERSION) //libc++ |
| #if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103 |
| #ifndef HALF_ENABLE_CPP11_TYPE_TRAITS |
| #define HALF_ENABLE_CPP11_TYPE_TRAITS 1 |
| #endif |
| #ifndef HALF_ENABLE_CPP11_CSTDINT |
| #define HALF_ENABLE_CPP11_CSTDINT 1 |
| #endif |
| #ifndef HALF_ENABLE_CPP11_CMATH |
| #define HALF_ENABLE_CPP11_CMATH 1 |
| #endif |
| #ifndef HALF_ENABLE_CPP11_HASH |
| #define HALF_ENABLE_CPP11_HASH 1 |
| #endif |
| #endif |
| #elif defined(__GLIBCXX__) //libstdc++ |
| #if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103 |
| #ifdef __clang__ |
| #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS) |
| #define HALF_ENABLE_CPP11_TYPE_TRAITS 1 |
| #endif |
| #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT) |
| #define HALF_ENABLE_CPP11_CSTDINT 1 |
| #endif |
| #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH) |
| #define HALF_ENABLE_CPP11_CMATH 1 |
| #endif |
| #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH) |
| #define HALF_ENABLE_CPP11_HASH 1 |
| #endif |
| #else |
| #if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT) |
| #define HALF_ENABLE_CPP11_CSTDINT 1 |
| #endif |
| #if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH) |
| #define HALF_ENABLE_CPP11_CMATH 1 |
| #endif |
| #if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH) |
| #define HALF_ENABLE_CPP11_HASH 1 |
| #endif |
| #endif |
| #endif |
| #elif defined(_CPPLIB_VER) //Dinkumware/Visual C++ |
| #if _CPPLIB_VER >= 520 |
| #ifndef HALF_ENABLE_CPP11_TYPE_TRAITS |
| #define HALF_ENABLE_CPP11_TYPE_TRAITS 1 |
| #endif |
| #ifndef HALF_ENABLE_CPP11_CSTDINT |
| #define HALF_ENABLE_CPP11_CSTDINT 1 |
| #endif |
| #ifndef HALF_ENABLE_CPP11_HASH |
| #define HALF_ENABLE_CPP11_HASH 1 |
| #endif |
| #endif |
| #if _CPPLIB_VER >= 610 |
| #ifndef HALF_ENABLE_CPP11_CMATH |
| #define HALF_ENABLE_CPP11_CMATH 1 |
| #endif |
| #endif |
| #endif |
| #undef HALF_GNUC_VERSION |
| |
| //support constexpr |
| #if HALF_ENABLE_CPP11_CONSTEXPR |
| #define HALF_CONSTEXPR constexpr |
| #define HALF_CONSTEXPR_CONST constexpr |
| #else |
| #define HALF_CONSTEXPR |
| #define HALF_CONSTEXPR_CONST const |
| #endif |
| |
| //support noexcept |
| #if HALF_ENABLE_CPP11_NOEXCEPT |
| #define HALF_NOEXCEPT noexcept |
| #define HALF_NOTHROW noexcept |
| #else |
| #define HALF_NOEXCEPT |
| #define HALF_NOTHROW throw() |
| #endif |
| |
| #include <algorithm> |
| #include <iostream> |
| #include <limits> |
| #include <climits> |
| #include <cmath> |
| #include <cstring> |
| #if HALF_ENABLE_CPP11_TYPE_TRAITS |
| #include <type_traits> |
| #endif |
| #if HALF_ENABLE_CPP11_CSTDINT |
| #include <cstdint> |
| #endif |
| #if HALF_ENABLE_CPP11_HASH |
| #include <functional> |
| #endif |
| |
| /// Default rounding mode. |
| /// This specifies the rounding mode used for all conversions between |
| /// [half](\ref half_float::half)s and `float`s as well as for the half_cast() |
| /// if not specifying a rounding mode explicitly. It can be redefined (before |
| /// including half.hpp) to one of the standard rounding modes using their |
| /// respective constants or the equivalent values of `std::float_round_style`: |
| /// |
| /// `std::float_round_style` | value | rounding |
| /// ---------------------------------|-------|------------------------- |
| /// `std::round_indeterminate` | -1 | fastest (default) |
| /// `std::round_toward_zero` | 0 | toward zero |
| /// `std::round_to_nearest` | 1 | to nearest |
| /// `std::round_toward_infinity` | 2 | toward positive infinity |
| /// `std::round_toward_neg_infinity` | 3 | toward negative infinity |
| /// |
| /// By default this is set to `-1` (`std::round_indeterminate`), which uses |
| /// truncation (round toward zero, but with overflows set to infinity) and is |
| /// the fastest rounding mode possible. It can even be set to |
| /// `std::numeric_limits<float>::round_style` to synchronize the rounding mode |
| /// with that of the underlying single-precision implementation. |
| #ifndef HALF_ROUND_STYLE |
| #define HALF_ROUND_STYLE -1 // = std::round_indeterminate |
| #endif |
| |
| /// Tie-breaking behaviour for round to nearest. |
| /// This specifies if ties in round to nearest should be resolved by rounding to |
| /// the nearest even value. By default this is defined to `0` resulting in the |
| /// faster but slightly more biased behaviour of rounding away from zero in |
| /// half-way cases (and thus equal to the round() function), but can be |
| /// redefined to `1` (before including half.hpp) if more IEEE-conformant |
| /// behaviour is needed. |
| #ifndef HALF_ROUND_TIES_TO_EVEN |
| #define HALF_ROUND_TIES_TO_EVEN 0 // ties away from zero |
| #endif |
| |
| /// Value signaling overflow. |
| /// In correspondence with `HUGE_VAL[F|L]` from `<cmath>` this symbol expands to |
| /// a positive value signaling the overflow of an operation, in particular it |
| /// just evaluates to positive infinity. |
| #define HUGE_VALH std::numeric_limits<half_float::half>::infinity() |
| |
| /// Fast half-precision fma function. |
| /// This symbol is only defined if the fma() function generally executes as fast |
| /// as, or faster than, a separate half-precision multiplication followed by an |
| /// addition. Due to the internal single-precision implementation of all |
| /// arithmetic operations, this is in fact always the case. |
| #define FP_FAST_FMAH 1 |
| |
| #ifndef FP_ILOGB0 |
| #define FP_ILOGB0 INT_MIN |
| #endif |
| #ifndef FP_ILOGBNAN |
| #define FP_ILOGBNAN INT_MAX |
| #endif |
| #ifndef FP_SUBNORMAL |
| #define FP_SUBNORMAL 0 |
| #endif |
| #ifndef FP_ZERO |
| #define FP_ZERO 1 |
| #endif |
| #ifndef FP_NAN |
| #define FP_NAN 2 |
| #endif |
| #ifndef FP_INFINITE |
| #define FP_INFINITE 3 |
| #endif |
| #ifndef FP_NORMAL |
| #define FP_NORMAL 4 |
| #endif |
| |
| |
| /// Main namespace for half precision functionality. |
| /// This namespace contains all the functionality provided by the library. |
| namespace half_float |
| { |
| class half; |
| |
| #if HALF_ENABLE_CPP11_USER_LITERALS |
| /// Library-defined half-precision literals. |
| /// Import this namespace to enable half-precision floating point |
| /// literals: |
| /// ~~~~{.cpp} |
| /// using namespace half_float::literal; |
| /// half_float::half = 4.2_h; |
| /// ~~~~ |
| namespace literal { |
| half operator""_h(long double); |
| } |
| #endif |
| |
| /// \internal |
| /// \brief Implementation details. |
| namespace detail |
| { |
| #if HALF_ENABLE_CPP11_TYPE_TRAITS |
| /// Conditional type. |
| template <bool B, typename T, typename F> |
| struct conditional : std::conditional<B, T, F> {}; |
| |
| /// Helper for tag dispatching. |
| template <bool B> |
| struct bool_type : std::integral_constant<bool, B> {}; |
| using std::false_type; |
| using std::true_type; |
| |
| /// Type traits for floating point types. |
| template <typename T> |
| struct is_float : std::is_floating_point<T> {}; |
| #else |
| /// Conditional type. |
| template <bool, typename T, typename> |
| struct conditional { |
| typedef T type; |
| }; |
| template <typename T, typename F> |
| struct conditional<false, T, F> { |
| typedef F type; |
| }; |
| |
| /// Helper for tag dispatching. |
| template <bool> |
| struct bool_type {}; |
| typedef bool_type<true> true_type; |
| typedef bool_type<false> false_type; |
| |
| /// Type traits for floating point types. |
| template <typename> |
| struct is_float : false_type {}; |
| template <typename T> |
| struct is_float<const T> : is_float<T> {}; |
| template <typename T> |
| struct is_float<volatile T> : is_float<T> {}; |
| template <typename T> |
| struct is_float<const volatile T> : is_float<T> {}; |
| template <> |
| struct is_float<float> : true_type {}; |
| template <> |
| struct is_float<double> : true_type {}; |
| template <> |
| struct is_float<long double> : true_type {}; |
| #endif |
| |
| /// Type traits for floating point bits. |
| template <typename T> |
| struct bits { |
| typedef unsigned char type; |
| }; |
| template <typename T> |
| struct bits<const T> : bits<T> {}; |
| template <typename T> |
| struct bits<volatile T> : bits<T> {}; |
| template <typename T> |
| struct bits<const volatile T> : bits<T> {}; |
| |
| #if HALF_ENABLE_CPP11_CSTDINT |
| /// Unsigned integer of (at least) 16 bits width. |
| typedef std::uint_least16_t uint16; |
| |
| /// Unsigned integer of (at least) 32 bits width. |
| template <> |
| struct bits<float> { |
| typedef std::uint_least32_t type; |
| }; |
| |
| /// Unsigned integer of (at least) 64 bits width. |
| template <> |
| struct bits<double> { |
| typedef std::uint_least64_t type; |
| }; |
| #else |
| /// Unsigned integer of (at least) 16 bits width. |
| typedef unsigned short uint16; |
| |
| /// Unsigned integer of (at least) 32 bits width. |
| template <> |
| struct bits<float> |
| : conditional<std::numeric_limits<unsigned int>::digits >= 32, |
| unsigned int, unsigned long> {}; |
| |
| #if HALF_ENABLE_CPP11_LONG_LONG |
| /// Unsigned integer of (at least) 64 bits width. |
| template <> |
| struct bits<double> |
| : conditional<std::numeric_limits<unsigned long>::digits >= 64, |
| unsigned long, unsigned long long> {}; |
| #else |
| /// Unsigned integer of (at least) 64 bits width. |
| template <> |
| struct bits<double> { |
| typedef unsigned long type; |
| }; |
| #endif |
| #endif |
| |
| /// Tag type for binary construction. |
| struct binary_t {}; |
| |
| /// Tag for binary construction. |
| HALF_CONSTEXPR_CONST binary_t binary = binary_t(); |
| |
| /// Temporary half-precision expression. |
| /// This class represents a half-precision expression which just stores |
| /// a single-precision value internally. |
| struct expr { |
| /// Conversion constructor. |
| /// \param f single-precision value to convert |
| explicit HALF_CONSTEXPR expr(float f) HALF_NOEXCEPT : value_(f) {} |
| |
| /// Conversion to single-precision. |
| /// \return single precision value representing expression value |
| HALF_CONSTEXPR operator float() const HALF_NOEXCEPT { return value_; } |
| |
| private: |
| /// Internal expression value stored in single-precision. |
| float value_; |
| }; |
| |
| /// SFINAE helper for generic half-precision functions. |
| /// This class template has to be specialized for each valid |
| /// combination of argument types to provide a corresponding |
| /// `type` member equivalent to \a T. |
| /// \tparam T type to return |
| template <typename T, typename, typename = void, typename = void> |
| struct enable {}; |
| template <typename T> |
| struct enable<T, half, void, void> { |
| typedef T type; }; |
| template<typename T> struct enable<T,expr,void,void> { typedef T type; }; |
| template<typename T> struct enable<T,half,half,void> { typedef T type; }; |
| template<typename T> struct enable<T,half,expr,void> { typedef T type; }; |
| template<typename T> struct enable<T,expr,half,void> { typedef T type; }; |
| template<typename T> struct enable<T,expr,expr,void> { typedef T type; }; |
| template<typename T> struct enable<T,half,half,half> { typedef T type; }; |
| template<typename T> struct enable<T,half,half,expr> { typedef T type; }; |
| template<typename T> struct enable<T,half,expr,half> { typedef T type; }; |
| template<typename T> struct enable<T,half,expr,expr> { typedef T type; }; |
| template<typename T> struct enable<T,expr,half,half> { typedef T type; }; |
| template<typename T> struct enable<T,expr,half,expr> { typedef T type; }; |
| template<typename T> struct enable<T,expr,expr,half> { typedef T type; }; |
| template<typename T> struct enable<T,expr,expr,expr> { typedef T type; }; |
| |
| /// Return type for specialized generic 2-argument |
| /// half-precision functions. This class template has to be |
| /// specialized for each valid combination of argument types to |
| /// provide a corresponding `type` member denoting the |
| /// appropriate return type. \tparam T first argument type |
| /// \tparam U first argument type |
| template <typename T, typename U> |
| struct result : enable<expr, T, U> {}; |
| template<> struct result<half,half> { typedef half type; }; |
| |
| /// \name Classification helpers |
| /// \{ |
| |
| /// Check for infinity. |
| /// \tparam T argument type (builtin floating point type) |
| /// \param arg value to query |
| /// \retval true if infinity |
| /// \retval false else |
| template<typename T> bool builtin_isinf(T arg) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return std::isinf(arg); |
| #elif defined(_MSC_VER) |
| return !::_finite(static_cast<double>(arg)) && |
| !::_isnan(static_cast<double>(arg)); |
| #else |
| return arg == std::numeric_limits<T>::infinity() || |
| arg == -std::numeric_limits<T>::infinity(); |
| #endif |
| } |
| |
| /// Check for NaN. |
| /// \tparam T argument type (builtin floating point type) |
| /// \param arg value to query |
| /// \retval true if not a number |
| /// \retval false else |
| template<typename T> bool builtin_isnan(T arg) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return std::isnan(arg); |
| #elif defined(_MSC_VER) |
| return ::_isnan(static_cast<double>(arg)) != 0; |
| #else |
| return arg != arg; |
| #endif |
| } |
| |
| /// Check sign. |
| /// \tparam T argument type (builtin floating point type) |
| /// \param arg value to query |
| /// \retval true if signbit set |
| /// \retval false else |
| template<typename T> bool builtin_signbit(T arg) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return std::signbit(arg); |
| #else |
| return arg < T() || (arg == T() && T(1) / arg < T()); |
| #endif |
| } |
| |
| /// \} |
| /// \name Conversion |
| /// \{ |
| |
| /// Convert IEEE single-precision to half-precision. |
| /// Credit for this goes to [Jeroen van der |
| /// Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf). |
| /// \tparam R rounding mode to use, `std::round_indeterminate` |
| /// for fastest rounding \param value single-precision value |
| /// \return binary representation of half-precision value |
| template <std::float_round_style R> |
| uint16 float2half_impl(float value, true_type) { |
| typedef bits<float>::type uint32; |
| uint32 bits; // = *reinterpret_cast<uint32*>(&value); |
| // //violating strict aliasing! |
| std::memcpy(&bits, &value, sizeof(float)); |
| /* uint16 hbits = (bits>>16) & 0x8000; |
| bits &= 0x7FFFFFFF; |
| int exp = bits >> 23; |
| if(exp == 255) |
| return hbits | 0x7C00 | |
| (0x3FF&-static_cast<unsigned>((bits&0x7FFFFF)!=0)); if(exp |
| > 142) |
| { |
| if(R == |
| std::round_toward_infinity) return hbits | 0x7C00 - |
| (hbits>>15); if(R == std::round_toward_neg_infinity) return |
| hbits | 0x7BFF + (hbits>>15); return hbits | 0x7BFF + |
| (R!=std::round_toward_zero); |
| } |
| int g, s; |
| if(exp > 112) |
| { |
| g = (bits>>12) & 1; |
| s = (bits&0xFFF) != 0; |
| hbits |= ((exp-112)<<10) | |
| ((bits>>13)&0x3FF); |
| } |
| else if(exp > 101) |
| { |
| int i = 125 - exp; |
| bits = (bits&0x7FFFFF) | |
| 0x800000; g = (bits>>i) & 1; s = (bits&((1L<<i)-1)) != 0; |
| hbits |= bits >> (i+1); |
| } |
| else |
| { |
| g = 0; |
| s = bits != 0; |
| } |
| if(R == std::round_to_nearest) |
| #if HALF_ROUND_TIES_TO_EVEN |
| hbits += g & |
| (s|hbits); #else hbits += g; #endif else if(R == |
| std::round_toward_infinity) hbits += ~(hbits>>15) & (s|g); |
| else if(R == |
| std::round_toward_neg_infinity) hbits += (hbits>>15) & |
| (g|s); |
| */ |
| static const uint16 base_table[512] = { |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, |
| 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, |
| 0x0200, 0x0400, 0x0800, 0x0C00, 0x1000, 0x1400, 0x1800, |
| 0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400, |
| 0x3800, 0x3C00, 0x4000, 0x4400, 0x4800, 0x4C00, 0x5000, |
| 0x5400, 0x5800, 0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00, |
| 0x7000, 0x7400, 0x7800, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, |
| 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, |
| 0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008, 0x8010, |
| 0x8020, 0x8040, 0x8080, 0x8100, 0x8200, 0x8400, 0x8800, |
| 0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400, |
| 0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00, 0xC000, |
| 0xC400, 0xC800, 0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00, |
| 0xE000, 0xE400, 0xE800, 0xEC00, 0xF000, 0xF400, 0xF800, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, |
| 0xFC00}; |
| static const unsigned char shift_table[512] = { |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, |
| 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, |
| 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, |
| 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 23, 22, 21, 20, 19, |
| 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, |
| 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, |
| 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
| 24, 24, 24, 24, 24, 24, 24, 13}; |
| uint16 hbits = base_table[bits >> 23] + |
| static_cast<uint16>((bits & 0x7FFFFF) >> |
| shift_table[bits >> 23]); |
| if (R == std::round_to_nearest) |
| hbits += |
| (((bits & 0x7FFFFF) >> (shift_table[bits >> 23] - 1)) | |
| (((bits >> 23) & 0xFF) == 102)) & |
| ((hbits & 0x7C00) != 0x7C00) |
| #if HALF_ROUND_TIES_TO_EVEN |
| & (((((static_cast<uint32>(1) |
| << (shift_table[bits >> 23] - 1)) - |
| 1) & |
| bits) != 0) | |
| hbits) |
| #endif |
| ; |
| else if (R == std::round_toward_zero) |
| hbits -= |
| ((hbits & 0x7FFF) == 0x7C00) & ~shift_table[bits >> 23]; |
| else if (R == std::round_toward_infinity) |
| hbits += ((((bits & 0x7FFFFF & |
| ((static_cast<uint32>(1) |
| << (shift_table[bits >> 23])) - |
| 1)) != 0) | |
| (((bits >> 23) <= 102) & ((bits >> 23) != 0))) & |
| (hbits < 0x7C00)) - |
| ((hbits == 0xFC00) & ((bits >> 23) != 511)); |
| else if (R == std::round_toward_neg_infinity) |
| hbits += |
| ((((bits & 0x7FFFFF & |
| ((static_cast<uint32>(1) |
| << (shift_table[bits >> 23])) - |
| 1)) != 0) | |
| (((bits >> 23) <= 358) & ((bits >> 23) != 256))) & |
| (hbits < 0xFC00) & (hbits >> 15)) - |
| ((hbits == 0x7C00) & ((bits >> 23) != 255)); |
| return hbits; |
| } |
| |
| /// Convert IEEE double-precision to half-precision. |
| /// \tparam R rounding mode to use, `std::round_indeterminate` |
| /// for fastest rounding \param value double-precision value |
| /// \return binary representation of half-precision value |
| template <std::float_round_style R> |
| uint16 float2half_impl(double value, true_type) { |
| typedef bits<float>::type uint32; |
| typedef bits<double>::type uint64; |
| uint64 bits; // = *reinterpret_cast<uint64*>(&value); |
| // //violating strict aliasing! |
| std::memcpy(&bits, &value, sizeof(double)); |
| uint32 hi = bits >> 32, lo = bits & 0xFFFFFFFF; |
| uint16 hbits = (hi >> 16) & 0x8000; |
| hi &= 0x7FFFFFFF; |
| int exp = hi >> 20; |
| if (exp == 2047) |
| return hbits | 0x7C00 | |
| (0x3FF & -static_cast<unsigned>( |
| (bits & 0xFFFFFFFFFFFFF) != 0)); |
| if (exp > 1038) { |
| if (R == std::round_toward_infinity) |
| return hbits | 0x7C00 - (hbits >> 15); |
| if (R == std::round_toward_neg_infinity) |
| return hbits | 0x7BFF + (hbits >> 15); |
| return hbits | 0x7BFF + (R != std::round_toward_zero); |
| } |
| int g, s = lo != 0; |
| if (exp > 1008) { |
| g = (hi >> 9) & 1; |
| s |= (hi & 0x1FF) != 0; |
| hbits |= ((exp - 1008) << 10) | ((hi >> 10) & 0x3FF); |
| } else if (exp > 997) { |
| int i = 1018 - exp; |
| hi = (hi & 0xFFFFF) | 0x100000; |
| g = (hi >> i) & 1; |
| s |= (hi & ((1L << i) - 1)) != 0; |
| hbits |= hi >> (i + 1); |
| } else { |
| g = 0; |
| s |= hi != 0; |
| } |
| if (R == std::round_to_nearest) |
| #if HALF_ROUND_TIES_TO_EVEN |
| hbits += g & (s | hbits); |
| #else |
| hbits += g; |
| #endif |
| else if (R == std::round_toward_infinity) |
| hbits += ~(hbits >> 15) & (s | g); |
| else if (R == std::round_toward_neg_infinity) |
| hbits += (hbits >> 15) & (g | s); |
| return hbits; |
| } |
| |
| /// Convert non-IEEE floating point to half-precision. |
| /// \tparam R rounding mode to use, `std::round_indeterminate` |
| /// for fastest rounding \tparam T source type (builtin floating |
| /// point type) \param value floating point value \return binary |
| /// representation of half-precision value |
| template <std::float_round_style R, typename T> |
| uint16 float2half_impl(T value, ...) { |
| uint16 hbits = static_cast<unsigned>(builtin_signbit(value)) |
| << 15; |
| if (value == T()) return hbits; |
| if (builtin_isnan(value)) return hbits | 0x7FFF; |
| if (builtin_isinf(value)) return hbits | 0x7C00; |
| int exp; |
| std::frexp(value, &exp); |
| if (exp > 16) { |
| if (R == std::round_toward_infinity) |
| return hbits | 0x7C00 - (hbits >> 15); |
| else if (R == std::round_toward_neg_infinity) |
| return hbits | 0x7BFF + (hbits >> 15); |
| return hbits | 0x7BFF + (R != std::round_toward_zero); |
| } |
| if (exp < -13) |
| value = std::ldexp(value, 24); |
| else { |
| value = std::ldexp(value, 11 - exp); |
| hbits |= ((exp + 13) << 10); |
| } |
| T ival, frac = std::modf(value, &ival); |
| hbits += |
| static_cast<uint16>(std::abs(static_cast<int>(ival))); |
| if (R == std::round_to_nearest) { |
| frac = std::abs(frac); |
| #if HALF_ROUND_TIES_TO_EVEN |
| hbits += (frac > T(0.5)) | ((frac == T(0.5)) & hbits); |
| #else |
| hbits += frac >= T(0.5); |
| #endif |
| } else if (R == std::round_toward_infinity) |
| hbits += frac > T(); |
| else if (R == std::round_toward_neg_infinity) |
| hbits += frac < T(); |
| return hbits; |
| } |
| |
| /// Convert floating point to half-precision. |
| /// \tparam R rounding mode to use, `std::round_indeterminate` |
| /// for fastest rounding \tparam T source type (builtin floating |
| /// point type) \param value floating point value \return binary |
| /// representation of half-precision value |
| template <std::float_round_style R, typename T> |
| uint16 float2half(T value) { |
| return float2half_impl<R>( |
| value, |
| bool_type < std::numeric_limits<T>::is_iec559 && |
| sizeof(typename bits<T>::type) == sizeof(T) > ()); |
| } |
| |
| /// Convert integer to half-precision floating point. |
| /// \tparam R rounding mode to use, `std::round_indeterminate` |
| /// for fastest rounding \tparam S `true` if value negative, |
| /// `false` else \tparam T type to convert (builtin integer |
| /// type) \param value non-negative integral value \return |
| /// binary representation of half-precision value |
| template <std::float_round_style R, bool S, typename T> |
| uint16 int2half_impl(T value) { |
| #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS |
| static_assert(std::is_integral<T>::value, |
| "int to half conversion only supports builtin " |
| "integer types"); |
| #endif |
| if (S) value = -value; |
| uint16 bits = S << 15; |
| if (value > 0xFFFF) { |
| if (R == std::round_toward_infinity) |
| bits |= 0x7C00 - S; |
| else if (R == std::round_toward_neg_infinity) |
| bits |= 0x7BFF + S; |
| else |
| bits |= 0x7BFF + (R != std::round_toward_zero); |
| } else if (value) { |
| unsigned int m = value, exp = 24; |
| for (; m < 0x400; m <<= 1, --exp) |
| ; |
| for (; m > 0x7FF; m >>= 1, ++exp) |
| ; |
| bits |= (exp << 10) + m; |
| if (exp > 24) { |
| if (R == std::round_to_nearest) |
| bits += |
| (value >> (exp - 25)) & 1 |
| #if HALF_ROUND_TIES_TO_EVEN |
| & (((((1 << (exp - 25)) - 1) & value) != 0) | bits) |
| #endif |
| ; |
| else if (R == std::round_toward_infinity) |
| bits += ((value & ((1 << (exp - 24)) - 1)) != 0) & !S; |
| else if (R == std::round_toward_neg_infinity) |
| bits += ((value & ((1 << (exp - 24)) - 1)) != 0) & S; |
| } |
| } |
| return bits; |
| } |
| |
| /// Convert integer to half-precision floating point. |
| /// \tparam R rounding mode to use, `std::round_indeterminate` |
| /// for fastest rounding \tparam T type to convert (builtin |
| /// integer type) \param value integral value \return binary |
| /// representation of half-precision value |
| template<std::float_round_style R,typename T> uint16 int2half(T value) |
| { |
| return (value < 0) ? int2half_impl<R, true>(value) |
| : int2half_impl<R, false>(value); |
| } |
| |
| /// Convert half-precision to IEEE single-precision. |
| /// Credit for this goes to [Jeroen van der |
| /// Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf). |
| /// \param value binary representation of half-precision value |
| /// \return single-precision value |
| inline float half2float_impl(uint16 value, float, true_type) { |
| typedef bits<float>::type uint32; |
| /* uint32 bits = |
| static_cast<uint32>(value&0x8000) |
| << 16; int abs = value & 0x7FFF; if(abs) |
| { |
| bits |= 0x38000000 << |
| static_cast<unsigned>(abs>=0x7C00); for(; abs<0x400; |
| abs<<=1,bits-=0x800000) ; bits += static_cast<uint32>(abs) |
| << 13; |
| } |
| */ |
| static const uint32 mantissa_table[2048] = { |
| 0x00000000, 0x33800000, 0x34000000, 0x34400000, |
| 0x34800000, 0x34A00000, 0x34C00000, 0x34E00000, |
| 0x35000000, 0x35100000, 0x35200000, 0x35300000, |
| 0x35400000, 0x35500000, 0x35600000, 0x35700000, |
| 0x35800000, 0x35880000, 0x35900000, 0x35980000, |
| 0x35A00000, 0x35A80000, 0x35B00000, 0x35B80000, |
| 0x35C00000, 0x35C80000, 0x35D00000, 0x35D80000, |
| 0x35E00000, 0x35E80000, 0x35F00000, 0x35F80000, |
| 0x36000000, 0x36040000, 0x36080000, 0x360C0000, |
| 0x36100000, 0x36140000, 0x36180000, 0x361C0000, |
| 0x36200000, 0x36240000, 0x36280000, 0x362C0000, |
| 0x36300000, 0x36340000, 0x36380000, 0x363C0000, |
| 0x36400000, 0x36440000, 0x36480000, 0x364C0000, |
| 0x36500000, 0x36540000, 0x36580000, 0x365C0000, |
| 0x36600000, 0x36640000, 0x36680000, 0x366C0000, |
| 0x36700000, 0x36740000, 0x36780000, 0x367C0000, |
| 0x36800000, 0x36820000, 0x36840000, 0x36860000, |
| 0x36880000, 0x368A0000, 0x368C0000, 0x368E0000, |
| 0x36900000, 0x36920000, 0x36940000, 0x36960000, |
| 0x36980000, 0x369A0000, 0x369C0000, 0x369E0000, |
| 0x36A00000, 0x36A20000, 0x36A40000, 0x36A60000, |
| 0x36A80000, 0x36AA0000, 0x36AC0000, 0x36AE0000, |
| 0x36B00000, 0x36B20000, 0x36B40000, 0x36B60000, |
| 0x36B80000, 0x36BA0000, 0x36BC0000, 0x36BE0000, |
| 0x36C00000, 0x36C20000, 0x36C40000, 0x36C60000, |
| 0x36C80000, 0x36CA0000, 0x36CC0000, 0x36CE0000, |
| 0x36D00000, 0x36D20000, 0x36D40000, 0x36D60000, |
| 0x36D80000, 0x36DA0000, 0x36DC0000, 0x36DE0000, |
| 0x36E00000, 0x36E20000, 0x36E40000, 0x36E60000, |
| 0x36E80000, 0x36EA0000, 0x36EC0000, 0x36EE0000, |
| 0x36F00000, 0x36F20000, 0x36F40000, 0x36F60000, |
| 0x36F80000, 0x36FA0000, 0x36FC0000, 0x36FE0000, |
| 0x37000000, 0x37010000, 0x37020000, 0x37030000, |
| 0x37040000, 0x37050000, 0x37060000, 0x37070000, |
| 0x37080000, 0x37090000, 0x370A0000, 0x370B0000, |
| 0x370C0000, 0x370D0000, 0x370E0000, 0x370F0000, |
| 0x37100000, 0x37110000, 0x37120000, 0x37130000, |
| 0x37140000, 0x37150000, 0x37160000, 0x37170000, |
| 0x37180000, 0x37190000, 0x371A0000, 0x371B0000, |
| 0x371C0000, 0x371D0000, 0x371E0000, 0x371F0000, |
| 0x37200000, 0x37210000, 0x37220000, 0x37230000, |
| 0x37240000, 0x37250000, 0x37260000, 0x37270000, |
| 0x37280000, 0x37290000, 0x372A0000, 0x372B0000, |
| 0x372C0000, 0x372D0000, 0x372E0000, 0x372F0000, |
| 0x37300000, 0x37310000, 0x37320000, 0x37330000, |
| 0x37340000, 0x37350000, 0x37360000, 0x37370000, |
| 0x37380000, 0x37390000, 0x373A0000, 0x373B0000, |
| 0x373C0000, 0x373D0000, 0x373E0000, 0x373F0000, |
| 0x37400000, 0x37410000, 0x37420000, 0x37430000, |
| 0x37440000, 0x37450000, 0x37460000, 0x37470000, |
| 0x37480000, 0x37490000, 0x374A0000, 0x374B0000, |
| 0x374C0000, 0x374D0000, 0x374E0000, 0x374F0000, |
| 0x37500000, 0x37510000, 0x37520000, 0x37530000, |
| 0x37540000, 0x37550000, 0x37560000, 0x37570000, |
| 0x37580000, 0x37590000, 0x375A0000, 0x375B0000, |
| 0x375C0000, 0x375D0000, 0x375E0000, 0x375F0000, |
| 0x37600000, 0x37610000, 0x37620000, 0x37630000, |
| 0x37640000, 0x37650000, 0x37660000, 0x37670000, |
| 0x37680000, 0x37690000, 0x376A0000, 0x376B0000, |
| 0x376C0000, 0x376D0000, 0x376E0000, 0x376F0000, |
| 0x37700000, 0x37710000, 0x37720000, 0x37730000, |
| 0x37740000, 0x37750000, 0x37760000, 0x37770000, |
| 0x37780000, 0x37790000, 0x377A0000, 0x377B0000, |
| 0x377C0000, 0x377D0000, 0x377E0000, 0x377F0000, |
| 0x37800000, 0x37808000, 0x37810000, 0x37818000, |
| 0x37820000, 0x37828000, 0x37830000, 0x37838000, |
| 0x37840000, 0x37848000, 0x37850000, 0x37858000, |
| 0x37860000, 0x37868000, 0x37870000, 0x37878000, |
| 0x37880000, 0x37888000, 0x37890000, 0x37898000, |
| 0x378A0000, 0x378A8000, 0x378B0000, 0x378B8000, |
| 0x378C0000, 0x378C8000, 0x378D0000, 0x378D8000, |
| 0x378E0000, 0x378E8000, 0x378F0000, 0x378F8000, |
| 0x37900000, 0x37908000, 0x37910000, 0x37918000, |
| 0x37920000, 0x37928000, 0x37930000, 0x37938000, |
| 0x37940000, 0x37948000, 0x37950000, 0x37958000, |
| 0x37960000, 0x37968000, 0x37970000, 0x37978000, |
| 0x37980000, 0x37988000, 0x37990000, 0x37998000, |
| 0x379A0000, 0x379A8000, 0x379B0000, 0x379B8000, |
| 0x379C0000, 0x379C8000, 0x379D0000, 0x379D8000, |
| 0x379E0000, 0x379E8000, 0x379F0000, 0x379F8000, |
| 0x37A00000, 0x37A08000, 0x37A10000, 0x37A18000, |
| 0x37A20000, 0x37A28000, 0x37A30000, 0x37A38000, |
| 0x37A40000, 0x37A48000, 0x37A50000, 0x37A58000, |
| 0x37A60000, 0x37A68000, 0x37A70000, 0x37A78000, |
| 0x37A80000, 0x37A88000, 0x37A90000, 0x37A98000, |
| 0x37AA0000, 0x37AA8000, 0x37AB0000, 0x37AB8000, |
| 0x37AC0000, 0x37AC8000, 0x37AD0000, 0x37AD8000, |
| 0x37AE0000, 0x37AE8000, 0x37AF0000, 0x37AF8000, |
| 0x37B00000, 0x37B08000, 0x37B10000, 0x37B18000, |
| 0x37B20000, 0x37B28000, 0x37B30000, 0x37B38000, |
| 0x37B40000, 0x37B48000, 0x37B50000, 0x37B58000, |
| 0x37B60000, 0x37B68000, 0x37B70000, 0x37B78000, |
| 0x37B80000, 0x37B88000, 0x37B90000, 0x37B98000, |
| 0x37BA0000, 0x37BA8000, 0x37BB0000, 0x37BB8000, |
| 0x37BC0000, 0x37BC8000, 0x37BD0000, 0x37BD8000, |
| 0x37BE0000, 0x37BE8000, 0x37BF0000, 0x37BF8000, |
| 0x37C00000, 0x37C08000, 0x37C10000, 0x37C18000, |
| 0x37C20000, 0x37C28000, 0x37C30000, 0x37C38000, |
| 0x37C40000, 0x37C48000, 0x37C50000, 0x37C58000, |
| 0x37C60000, 0x37C68000, 0x37C70000, 0x37C78000, |
| 0x37C80000, 0x37C88000, 0x37C90000, 0x37C98000, |
| 0x37CA0000, 0x37CA8000, 0x37CB0000, 0x37CB8000, |
| 0x37CC0000, 0x37CC8000, 0x37CD0000, 0x37CD8000, |
| 0x37CE0000, 0x37CE8000, 0x37CF0000, 0x37CF8000, |
| 0x37D00000, 0x37D08000, 0x37D10000, 0x37D18000, |
| 0x37D20000, 0x37D28000, 0x37D30000, 0x37D38000, |
| 0x37D40000, 0x37D48000, 0x37D50000, 0x37D58000, |
| 0x37D60000, 0x37D68000, 0x37D70000, 0x37D78000, |
| 0x37D80000, 0x37D88000, 0x37D90000, 0x37D98000, |
| 0x37DA0000, 0x37DA8000, 0x37DB0000, 0x37DB8000, |
| 0x37DC0000, 0x37DC8000, 0x37DD0000, 0x37DD8000, |
| 0x37DE0000, 0x37DE8000, 0x37DF0000, 0x37DF8000, |
| 0x37E00000, 0x37E08000, 0x37E10000, 0x37E18000, |
| 0x37E20000, 0x37E28000, 0x37E30000, 0x37E38000, |
| 0x37E40000, 0x37E48000, 0x37E50000, 0x37E58000, |
| 0x37E60000, 0x37E68000, 0x37E70000, 0x37E78000, |
| 0x37E80000, 0x37E88000, 0x37E90000, 0x37E98000, |
| 0x37EA0000, 0x37EA8000, 0x37EB0000, 0x37EB8000, |
| 0x37EC0000, 0x37EC8000, 0x37ED0000, 0x37ED8000, |
| 0x37EE0000, 0x37EE8000, 0x37EF0000, 0x37EF8000, |
| 0x37F00000, 0x37F08000, 0x37F10000, 0x37F18000, |
| 0x37F20000, 0x37F28000, 0x37F30000, 0x37F38000, |
| 0x37F40000, 0x37F48000, 0x37F50000, 0x37F58000, |
| 0x37F60000, 0x37F68000, 0x37F70000, 0x37F78000, |
| 0x37F80000, 0x37F88000, 0x37F90000, 0x37F98000, |
| 0x37FA0000, 0x37FA8000, 0x37FB0000, 0x37FB8000, |
| 0x37FC0000, 0x37FC8000, 0x37FD0000, 0x37FD8000, |
| 0x37FE0000, 0x37FE8000, 0x37FF0000, 0x37FF8000, |
| 0x38000000, 0x38004000, 0x38008000, 0x3800C000, |
| 0x38010000, 0x38014000, 0x38018000, 0x3801C000, |
| 0x38020000, 0x38024000, 0x38028000, 0x3802C000, |
| 0x38030000, 0x38034000, 0x38038000, 0x3803C000, |
| 0x38040000, 0x38044000, 0x38048000, 0x3804C000, |
| 0x38050000, 0x38054000, 0x38058000, 0x3805C000, |
| 0x38060000, 0x38064000, 0x38068000, 0x3806C000, |
| 0x38070000, 0x38074000, 0x38078000, 0x3807C000, |
| 0x38080000, 0x38084000, 0x38088000, 0x3808C000, |
| 0x38090000, 0x38094000, 0x38098000, 0x3809C000, |
| 0x380A0000, 0x380A4000, 0x380A8000, 0x380AC000, |
| 0x380B0000, 0x380B4000, 0x380B8000, 0x380BC000, |
| 0x380C0000, 0x380C4000, 0x380C8000, 0x380CC000, |
| 0x380D0000, 0x380D4000, 0x380D8000, 0x380DC000, |
| 0x380E0000, 0x380E4000, 0x380E8000, 0x380EC000, |
| 0x380F0000, 0x380F4000, 0x380F8000, 0x380FC000, |
| 0x38100000, 0x38104000, 0x38108000, 0x3810C000, |
| 0x38110000, 0x38114000, 0x38118000, 0x3811C000, |
| 0x38120000, 0x38124000, 0x38128000, 0x3812C000, |
| 0x38130000, 0x38134000, 0x38138000, 0x3813C000, |
| 0x38140000, 0x38144000, 0x38148000, 0x3814C000, |
| 0x38150000, 0x38154000, 0x38158000, 0x3815C000, |
| 0x38160000, 0x38164000, 0x38168000, 0x3816C000, |
| 0x38170000, 0x38174000, 0x38178000, 0x3817C000, |
| 0x38180000, 0x38184000, 0x38188000, 0x3818C000, |
| 0x38190000, 0x38194000, 0x38198000, 0x3819C000, |
| 0x381A0000, 0x381A4000, 0x381A8000, 0x381AC000, |
| 0x381B0000, 0x381B4000, 0x381B8000, 0x381BC000, |
| 0x381C0000, 0x381C4000, 0x381C8000, 0x381CC000, |
| 0x381D0000, 0x381D4000, 0x381D8000, 0x381DC000, |
| 0x381E0000, 0x381E4000, 0x381E8000, 0x381EC000, |
| 0x381F0000, 0x381F4000, 0x381F8000, 0x381FC000, |
| 0x38200000, 0x38204000, 0x38208000, 0x3820C000, |
| 0x38210000, 0x38214000, 0x38218000, 0x3821C000, |
| 0x38220000, 0x38224000, 0x38228000, 0x3822C000, |
| 0x38230000, 0x38234000, 0x38238000, 0x3823C000, |
| 0x38240000, 0x38244000, 0x38248000, 0x3824C000, |
| 0x38250000, 0x38254000, 0x38258000, 0x3825C000, |
| 0x38260000, 0x38264000, 0x38268000, 0x3826C000, |
| 0x38270000, 0x38274000, 0x38278000, 0x3827C000, |
| 0x38280000, 0x38284000, 0x38288000, 0x3828C000, |
| 0x38290000, 0x38294000, 0x38298000, 0x3829C000, |
| 0x382A0000, 0x382A4000, 0x382A8000, 0x382AC000, |
| 0x382B0000, 0x382B4000, 0x382B8000, 0x382BC000, |
| 0x382C0000, 0x382C4000, 0x382C8000, 0x382CC000, |
| 0x382D0000, 0x382D4000, 0x382D8000, 0x382DC000, |
| 0x382E0000, 0x382E4000, 0x382E8000, 0x382EC000, |
| 0x382F0000, 0x382F4000, 0x382F8000, 0x382FC000, |
| 0x38300000, 0x38304000, 0x38308000, 0x3830C000, |
| 0x38310000, 0x38314000, 0x38318000, 0x3831C000, |
| 0x38320000, 0x38324000, 0x38328000, 0x3832C000, |
| 0x38330000, 0x38334000, 0x38338000, 0x3833C000, |
| 0x38340000, 0x38344000, 0x38348000, 0x3834C000, |
| 0x38350000, 0x38354000, 0x38358000, 0x3835C000, |
| 0x38360000, 0x38364000, 0x38368000, 0x3836C000, |
| 0x38370000, 0x38374000, 0x38378000, 0x3837C000, |
| 0x38380000, 0x38384000, 0x38388000, 0x3838C000, |
| 0x38390000, 0x38394000, 0x38398000, 0x3839C000, |
| 0x383A0000, 0x383A4000, 0x383A8000, 0x383AC000, |
| 0x383B0000, 0x383B4000, 0x383B8000, 0x383BC000, |
| 0x383C0000, 0x383C4000, 0x383C8000, 0x383CC000, |
| 0x383D0000, 0x383D4000, 0x383D8000, 0x383DC000, |
| 0x383E0000, 0x383E4000, 0x383E8000, 0x383EC000, |
| 0x383F0000, 0x383F4000, 0x383F8000, 0x383FC000, |
| 0x38400000, 0x38404000, 0x38408000, 0x3840C000, |
| 0x38410000, 0x38414000, 0x38418000, 0x3841C000, |
| 0x38420000, 0x38424000, 0x38428000, 0x3842C000, |
| 0x38430000, 0x38434000, 0x38438000, 0x3843C000, |
| 0x38440000, 0x38444000, 0x38448000, 0x3844C000, |
| 0x38450000, 0x38454000, 0x38458000, 0x3845C000, |
| 0x38460000, 0x38464000, 0x38468000, 0x3846C000, |
| 0x38470000, 0x38474000, 0x38478000, 0x3847C000, |
| 0x38480000, 0x38484000, 0x38488000, 0x3848C000, |
| 0x38490000, 0x38494000, 0x38498000, 0x3849C000, |
| 0x384A0000, 0x384A4000, 0x384A8000, 0x384AC000, |
| 0x384B0000, 0x384B4000, 0x384B8000, 0x384BC000, |
| 0x384C0000, 0x384C4000, 0x384C8000, 0x384CC000, |
| 0x384D0000, 0x384D4000, 0x384D8000, 0x384DC000, |
| 0x384E0000, 0x384E4000, 0x384E8000, 0x384EC000, |
| 0x384F0000, 0x384F4000, 0x384F8000, 0x384FC000, |
| 0x38500000, 0x38504000, 0x38508000, 0x3850C000, |
| 0x38510000, 0x38514000, 0x38518000, 0x3851C000, |
| 0x38520000, 0x38524000, 0x38528000, 0x3852C000, |
| 0x38530000, 0x38534000, 0x38538000, 0x3853C000, |
| 0x38540000, 0x38544000, 0x38548000, 0x3854C000, |
| 0x38550000, 0x38554000, 0x38558000, 0x3855C000, |
| 0x38560000, 0x38564000, 0x38568000, 0x3856C000, |
| 0x38570000, 0x38574000, 0x38578000, 0x3857C000, |
| 0x38580000, 0x38584000, 0x38588000, 0x3858C000, |
| 0x38590000, 0x38594000, 0x38598000, 0x3859C000, |
| 0x385A0000, 0x385A4000, 0x385A8000, 0x385AC000, |
| 0x385B0000, 0x385B4000, 0x385B8000, 0x385BC000, |
| 0x385C0000, 0x385C4000, 0x385C8000, 0x385CC000, |
| 0x385D0000, 0x385D4000, 0x385D8000, 0x385DC000, |
| 0x385E0000, 0x385E4000, 0x385E8000, 0x385EC000, |
| 0x385F0000, 0x385F4000, 0x385F8000, 0x385FC000, |
| 0x38600000, 0x38604000, 0x38608000, 0x3860C000, |
| 0x38610000, 0x38614000, 0x38618000, 0x3861C000, |
| 0x38620000, 0x38624000, 0x38628000, 0x3862C000, |
| 0x38630000, 0x38634000, 0x38638000, 0x3863C000, |
| 0x38640000, 0x38644000, 0x38648000, 0x3864C000, |
| 0x38650000, 0x38654000, 0x38658000, 0x3865C000, |
| 0x38660000, 0x38664000, 0x38668000, 0x3866C000, |
| 0x38670000, 0x38674000, 0x38678000, 0x3867C000, |
| 0x38680000, 0x38684000, 0x38688000, 0x3868C000, |
| 0x38690000, 0x38694000, 0x38698000, 0x3869C000, |
| 0x386A0000, 0x386A4000, 0x386A8000, 0x386AC000, |
| 0x386B0000, 0x386B4000, 0x386B8000, 0x386BC000, |
| 0x386C0000, 0x386C4000, 0x386C8000, 0x386CC000, |
| 0x386D0000, 0x386D4000, 0x386D8000, 0x386DC000, |
| 0x386E0000, 0x386E4000, 0x386E8000, 0x386EC000, |
| 0x386F0000, 0x386F4000, 0x386F8000, 0x386FC000, |
| 0x38700000, 0x38704000, 0x38708000, 0x3870C000, |
| 0x38710000, 0x38714000, 0x38718000, 0x3871C000, |
| 0x38720000, 0x38724000, 0x38728000, 0x3872C000, |
| 0x38730000, 0x38734000, 0x38738000, 0x3873C000, |
| 0x38740000, 0x38744000, 0x38748000, 0x3874C000, |
| 0x38750000, 0x38754000, 0x38758000, 0x3875C000, |
| 0x38760000, 0x38764000, 0x38768000, 0x3876C000, |
| 0x38770000, 0x38774000, 0x38778000, 0x3877C000, |
| 0x38780000, 0x38784000, 0x38788000, 0x3878C000, |
| 0x38790000, 0x38794000, 0x38798000, 0x3879C000, |
| 0x387A0000, 0x387A4000, 0x387A8000, 0x387AC000, |
| 0x387B0000, 0x387B4000, 0x387B8000, 0x387BC000, |
| 0x387C0000, 0x387C4000, 0x387C8000, 0x387CC000, |
| 0x387D0000, 0x387D4000, 0x387D8000, 0x387DC000, |
| 0x387E0000, 0x387E4000, 0x387E8000, 0x387EC000, |
| 0x387F0000, 0x387F4000, 0x387F8000, 0x387FC000, |
| 0x38000000, 0x38002000, 0x38004000, 0x38006000, |
| 0x38008000, 0x3800A000, 0x3800C000, 0x3800E000, |
| 0x38010000, 0x38012000, 0x38014000, 0x38016000, |
| 0x38018000, 0x3801A000, 0x3801C000, 0x3801E000, |
| 0x38020000, 0x38022000, 0x38024000, 0x38026000, |
| 0x38028000, 0x3802A000, 0x3802C000, 0x3802E000, |
| 0x38030000, 0x38032000, 0x38034000, 0x38036000, |
| 0x38038000, 0x3803A000, 0x3803C000, 0x3803E000, |
| 0x38040000, 0x38042000, 0x38044000, 0x38046000, |
| 0x38048000, 0x3804A000, 0x3804C000, 0x3804E000, |
| 0x38050000, 0x38052000, 0x38054000, 0x38056000, |
| 0x38058000, 0x3805A000, 0x3805C000, 0x3805E000, |
| 0x38060000, 0x38062000, 0x38064000, 0x38066000, |
| 0x38068000, 0x3806A000, 0x3806C000, 0x3806E000, |
| 0x38070000, 0x38072000, 0x38074000, 0x38076000, |
| 0x38078000, 0x3807A000, 0x3807C000, 0x3807E000, |
| 0x38080000, 0x38082000, 0x38084000, 0x38086000, |
| 0x38088000, 0x3808A000, 0x3808C000, 0x3808E000, |
| 0x38090000, 0x38092000, 0x38094000, 0x38096000, |
| 0x38098000, 0x3809A000, 0x3809C000, 0x3809E000, |
| 0x380A0000, 0x380A2000, 0x380A4000, 0x380A6000, |
| 0x380A8000, 0x380AA000, 0x380AC000, 0x380AE000, |
| 0x380B0000, 0x380B2000, 0x380B4000, 0x380B6000, |
| 0x380B8000, 0x380BA000, 0x380BC000, 0x380BE000, |
| 0x380C0000, 0x380C2000, 0x380C4000, 0x380C6000, |
| 0x380C8000, 0x380CA000, 0x380CC000, 0x380CE000, |
| 0x380D0000, 0x380D2000, 0x380D4000, 0x380D6000, |
| 0x380D8000, 0x380DA000, 0x380DC000, 0x380DE000, |
| 0x380E0000, 0x380E2000, 0x380E4000, 0x380E6000, |
| 0x380E8000, 0x380EA000, 0x380EC000, 0x380EE000, |
| 0x380F0000, 0x380F2000, 0x380F4000, 0x380F6000, |
| 0x380F8000, 0x380FA000, 0x380FC000, 0x380FE000, |
| 0x38100000, 0x38102000, 0x38104000, 0x38106000, |
| 0x38108000, 0x3810A000, 0x3810C000, 0x3810E000, |
| 0x38110000, 0x38112000, 0x38114000, 0x38116000, |
| 0x38118000, 0x3811A000, 0x3811C000, 0x3811E000, |
| 0x38120000, 0x38122000, 0x38124000, 0x38126000, |
| 0x38128000, 0x3812A000, 0x3812C000, 0x3812E000, |
| 0x38130000, 0x38132000, 0x38134000, 0x38136000, |
| 0x38138000, 0x3813A000, 0x3813C000, 0x3813E000, |
| 0x38140000, 0x38142000, 0x38144000, 0x38146000, |
| 0x38148000, 0x3814A000, 0x3814C000, 0x3814E000, |
| 0x38150000, 0x38152000, 0x38154000, 0x38156000, |
| 0x38158000, 0x3815A000, 0x3815C000, 0x3815E000, |
| 0x38160000, 0x38162000, 0x38164000, 0x38166000, |
| 0x38168000, 0x3816A000, 0x3816C000, 0x3816E000, |
| 0x38170000, 0x38172000, 0x38174000, 0x38176000, |
| 0x38178000, 0x3817A000, 0x3817C000, 0x3817E000, |
| 0x38180000, 0x38182000, 0x38184000, 0x38186000, |
| 0x38188000, 0x3818A000, 0x3818C000, 0x3818E000, |
| 0x38190000, 0x38192000, 0x38194000, 0x38196000, |
| 0x38198000, 0x3819A000, 0x3819C000, 0x3819E000, |
| 0x381A0000, 0x381A2000, 0x381A4000, 0x381A6000, |
| 0x381A8000, 0x381AA000, 0x381AC000, 0x381AE000, |
| 0x381B0000, 0x381B2000, 0x381B4000, 0x381B6000, |
| 0x381B8000, 0x381BA000, 0x381BC000, 0x381BE000, |
| 0x381C0000, 0x381C2000, 0x381C4000, 0x381C6000, |
| 0x381C8000, 0x381CA000, 0x381CC000, 0x381CE000, |
| 0x381D0000, 0x381D2000, 0x381D4000, 0x381D6000, |
| 0x381D8000, 0x381DA000, 0x381DC000, 0x381DE000, |
| 0x381E0000, 0x381E2000, 0x381E4000, 0x381E6000, |
| 0x381E8000, 0x381EA000, 0x381EC000, 0x381EE000, |
| 0x381F0000, 0x381F2000, 0x381F4000, 0x381F6000, |
| 0x381F8000, 0x381FA000, 0x381FC000, 0x381FE000, |
| 0x38200000, 0x38202000, 0x38204000, 0x38206000, |
| 0x38208000, 0x3820A000, 0x3820C000, 0x3820E000, |
| 0x38210000, 0x38212000, 0x38214000, 0x38216000, |
| 0x38218000, 0x3821A000, 0x3821C000, 0x3821E000, |
| 0x38220000, 0x38222000, 0x38224000, 0x38226000, |
| 0x38228000, 0x3822A000, 0x3822C000, 0x3822E000, |
| 0x38230000, 0x38232000, 0x38234000, 0x38236000, |
| 0x38238000, 0x3823A000, 0x3823C000, 0x3823E000, |
| 0x38240000, 0x38242000, 0x38244000, 0x38246000, |
| 0x38248000, 0x3824A000, 0x3824C000, 0x3824E000, |
| 0x38250000, 0x38252000, 0x38254000, 0x38256000, |
| 0x38258000, 0x3825A000, 0x3825C000, 0x3825E000, |
| 0x38260000, 0x38262000, 0x38264000, 0x38266000, |
| 0x38268000, 0x3826A000, 0x3826C000, 0x3826E000, |
| 0x38270000, 0x38272000, 0x38274000, 0x38276000, |
| 0x38278000, 0x3827A000, 0x3827C000, 0x3827E000, |
| 0x38280000, 0x38282000, 0x38284000, 0x38286000, |
| 0x38288000, 0x3828A000, 0x3828C000, 0x3828E000, |
| 0x38290000, 0x38292000, 0x38294000, 0x38296000, |
| 0x38298000, 0x3829A000, 0x3829C000, 0x3829E000, |
| 0x382A0000, 0x382A2000, 0x382A4000, 0x382A6000, |
| 0x382A8000, 0x382AA000, 0x382AC000, 0x382AE000, |
| 0x382B0000, 0x382B2000, 0x382B4000, 0x382B6000, |
| 0x382B8000, 0x382BA000, 0x382BC000, 0x382BE000, |
| 0x382C0000, 0x382C2000, 0x382C4000, 0x382C6000, |
| 0x382C8000, 0x382CA000, 0x382CC000, 0x382CE000, |
| 0x382D0000, 0x382D2000, 0x382D4000, 0x382D6000, |
| 0x382D8000, 0x382DA000, 0x382DC000, 0x382DE000, |
| 0x382E0000, 0x382E2000, 0x382E4000, 0x382E6000, |
| 0x382E8000, 0x382EA000, 0x382EC000, 0x382EE000, |
| 0x382F0000, 0x382F2000, 0x382F4000, 0x382F6000, |
| 0x382F8000, 0x382FA000, 0x382FC000, 0x382FE000, |
| 0x38300000, 0x38302000, 0x38304000, 0x38306000, |
| 0x38308000, 0x3830A000, 0x3830C000, 0x3830E000, |
| 0x38310000, 0x38312000, 0x38314000, 0x38316000, |
| 0x38318000, 0x3831A000, 0x3831C000, 0x3831E000, |
| 0x38320000, 0x38322000, 0x38324000, 0x38326000, |
| 0x38328000, 0x3832A000, 0x3832C000, 0x3832E000, |
| 0x38330000, 0x38332000, 0x38334000, 0x38336000, |
| 0x38338000, 0x3833A000, 0x3833C000, 0x3833E000, |
| 0x38340000, 0x38342000, 0x38344000, 0x38346000, |
| 0x38348000, 0x3834A000, 0x3834C000, 0x3834E000, |
| 0x38350000, 0x38352000, 0x38354000, 0x38356000, |
| 0x38358000, 0x3835A000, 0x3835C000, 0x3835E000, |
| 0x38360000, 0x38362000, 0x38364000, 0x38366000, |
| 0x38368000, 0x3836A000, 0x3836C000, 0x3836E000, |
| 0x38370000, 0x38372000, 0x38374000, 0x38376000, |
| 0x38378000, 0x3837A000, 0x3837C000, 0x3837E000, |
| 0x38380000, 0x38382000, 0x38384000, 0x38386000, |
| 0x38388000, 0x3838A000, 0x3838C000, 0x3838E000, |
| 0x38390000, 0x38392000, 0x38394000, 0x38396000, |
| 0x38398000, 0x3839A000, 0x3839C000, 0x3839E000, |
| 0x383A0000, 0x383A2000, 0x383A4000, 0x383A6000, |
| 0x383A8000, 0x383AA000, 0x383AC000, 0x383AE000, |
| 0x383B0000, 0x383B2000, 0x383B4000, 0x383B6000, |
| 0x383B8000, 0x383BA000, 0x383BC000, 0x383BE000, |
| 0x383C0000, 0x383C2000, 0x383C4000, 0x383C6000, |
| 0x383C8000, 0x383CA000, 0x383CC000, 0x383CE000, |
| 0x383D0000, 0x383D2000, 0x383D4000, 0x383D6000, |
| 0x383D8000, 0x383DA000, 0x383DC000, 0x383DE000, |
| 0x383E0000, 0x383E2000, 0x383E4000, 0x383E6000, |
| 0x383E8000, 0x383EA000, 0x383EC000, 0x383EE000, |
| 0x383F0000, 0x383F2000, 0x383F4000, 0x383F6000, |
| 0x383F8000, 0x383FA000, 0x383FC000, 0x383FE000, |
| 0x38400000, 0x38402000, 0x38404000, 0x38406000, |
| 0x38408000, 0x3840A000, 0x3840C000, 0x3840E000, |
| 0x38410000, 0x38412000, 0x38414000, 0x38416000, |
| 0x38418000, 0x3841A000, 0x3841C000, 0x3841E000, |
| 0x38420000, 0x38422000, 0x38424000, 0x38426000, |
| 0x38428000, 0x3842A000, 0x3842C000, 0x3842E000, |
| 0x38430000, 0x38432000, 0x38434000, 0x38436000, |
| 0x38438000, 0x3843A000, 0x3843C000, 0x3843E000, |
| 0x38440000, 0x38442000, 0x38444000, 0x38446000, |
| 0x38448000, 0x3844A000, 0x3844C000, 0x3844E000, |
| 0x38450000, 0x38452000, 0x38454000, 0x38456000, |
| 0x38458000, 0x3845A000, 0x3845C000, 0x3845E000, |
| 0x38460000, 0x38462000, 0x38464000, 0x38466000, |
| 0x38468000, 0x3846A000, 0x3846C000, 0x3846E000, |
| 0x38470000, 0x38472000, 0x38474000, 0x38476000, |
| 0x38478000, 0x3847A000, 0x3847C000, 0x3847E000, |
| 0x38480000, 0x38482000, 0x38484000, 0x38486000, |
| 0x38488000, 0x3848A000, 0x3848C000, 0x3848E000, |
| 0x38490000, 0x38492000, 0x38494000, 0x38496000, |
| 0x38498000, 0x3849A000, 0x3849C000, 0x3849E000, |
| 0x384A0000, 0x384A2000, 0x384A4000, 0x384A6000, |
| 0x384A8000, 0x384AA000, 0x384AC000, 0x384AE000, |
| 0x384B0000, 0x384B2000, 0x384B4000, 0x384B6000, |
| 0x384B8000, 0x384BA000, 0x384BC000, 0x384BE000, |
| 0x384C0000, 0x384C2000, 0x384C4000, 0x384C6000, |
| 0x384C8000, 0x384CA000, 0x384CC000, 0x384CE000, |
| 0x384D0000, 0x384D2000, 0x384D4000, 0x384D6000, |
| 0x384D8000, 0x384DA000, 0x384DC000, 0x384DE000, |
| 0x384E0000, 0x384E2000, 0x384E4000, 0x384E6000, |
| 0x384E8000, 0x384EA000, 0x384EC000, 0x384EE000, |
| 0x384F0000, 0x384F2000, 0x384F4000, 0x384F6000, |
| 0x384F8000, 0x384FA000, 0x384FC000, 0x384FE000, |
| 0x38500000, 0x38502000, 0x38504000, 0x38506000, |
| 0x38508000, 0x3850A000, 0x3850C000, 0x3850E000, |
| 0x38510000, 0x38512000, 0x38514000, 0x38516000, |
| 0x38518000, 0x3851A000, 0x3851C000, 0x3851E000, |
| 0x38520000, 0x38522000, 0x38524000, 0x38526000, |
| 0x38528000, 0x3852A000, 0x3852C000, 0x3852E000, |
| 0x38530000, 0x38532000, 0x38534000, 0x38536000, |
| 0x38538000, 0x3853A000, 0x3853C000, 0x3853E000, |
| 0x38540000, 0x38542000, 0x38544000, 0x38546000, |
| 0x38548000, 0x3854A000, 0x3854C000, 0x3854E000, |
| 0x38550000, 0x38552000, 0x38554000, 0x38556000, |
| 0x38558000, 0x3855A000, 0x3855C000, 0x3855E000, |
| 0x38560000, 0x38562000, 0x38564000, 0x38566000, |
| 0x38568000, 0x3856A000, 0x3856C000, 0x3856E000, |
| 0x38570000, 0x38572000, 0x38574000, 0x38576000, |
| 0x38578000, 0x3857A000, 0x3857C000, 0x3857E000, |
| 0x38580000, 0x38582000, 0x38584000, 0x38586000, |
| 0x38588000, 0x3858A000, 0x3858C000, 0x3858E000, |
| 0x38590000, 0x38592000, 0x38594000, 0x38596000, |
| 0x38598000, 0x3859A000, 0x3859C000, 0x3859E000, |
| 0x385A0000, 0x385A2000, 0x385A4000, 0x385A6000, |
| 0x385A8000, 0x385AA000, 0x385AC000, 0x385AE000, |
| 0x385B0000, 0x385B2000, 0x385B4000, 0x385B6000, |
| 0x385B8000, 0x385BA000, 0x385BC000, 0x385BE000, |
| 0x385C0000, 0x385C2000, 0x385C4000, 0x385C6000, |
| 0x385C8000, 0x385CA000, 0x385CC000, 0x385CE000, |
| 0x385D0000, 0x385D2000, 0x385D4000, 0x385D6000, |
| 0x385D8000, 0x385DA000, 0x385DC000, 0x385DE000, |
| 0x385E0000, 0x385E2000, 0x385E4000, 0x385E6000, |
| 0x385E8000, 0x385EA000, 0x385EC000, 0x385EE000, |
| 0x385F0000, 0x385F2000, 0x385F4000, 0x385F6000, |
| 0x385F8000, 0x385FA000, 0x385FC000, 0x385FE000, |
| 0x38600000, 0x38602000, 0x38604000, 0x38606000, |
| 0x38608000, 0x3860A000, 0x3860C000, 0x3860E000, |
| 0x38610000, 0x38612000, 0x38614000, 0x38616000, |
| 0x38618000, 0x3861A000, 0x3861C000, 0x3861E000, |
| 0x38620000, 0x38622000, 0x38624000, 0x38626000, |
| 0x38628000, 0x3862A000, 0x3862C000, 0x3862E000, |
| 0x38630000, 0x38632000, 0x38634000, 0x38636000, |
| 0x38638000, 0x3863A000, 0x3863C000, 0x3863E000, |
| 0x38640000, 0x38642000, 0x38644000, 0x38646000, |
| 0x38648000, 0x3864A000, 0x3864C000, 0x3864E000, |
| 0x38650000, 0x38652000, 0x38654000, 0x38656000, |
| 0x38658000, 0x3865A000, 0x3865C000, 0x3865E000, |
| 0x38660000, 0x38662000, 0x38664000, 0x38666000, |
| 0x38668000, 0x3866A000, 0x3866C000, 0x3866E000, |
| 0x38670000, 0x38672000, 0x38674000, 0x38676000, |
| 0x38678000, 0x3867A000, 0x3867C000, 0x3867E000, |
| 0x38680000, 0x38682000, 0x38684000, 0x38686000, |
| 0x38688000, 0x3868A000, 0x3868C000, 0x3868E000, |
| 0x38690000, 0x38692000, 0x38694000, 0x38696000, |
| 0x38698000, 0x3869A000, 0x3869C000, 0x3869E000, |
| 0x386A0000, 0x386A2000, 0x386A4000, 0x386A6000, |
| 0x386A8000, 0x386AA000, 0x386AC000, 0x386AE000, |
| 0x386B0000, 0x386B2000, 0x386B4000, 0x386B6000, |
| 0x386B8000, 0x386BA000, 0x386BC000, 0x386BE000, |
| 0x386C0000, 0x386C2000, 0x386C4000, 0x386C6000, |
| 0x386C8000, 0x386CA000, 0x386CC000, 0x386CE000, |
| 0x386D0000, 0x386D2000, 0x386D4000, 0x386D6000, |
| 0x386D8000, 0x386DA000, 0x386DC000, 0x386DE000, |
| 0x386E0000, 0x386E2000, 0x386E4000, 0x386E6000, |
| 0x386E8000, 0x386EA000, 0x386EC000, 0x386EE000, |
| 0x386F0000, 0x386F2000, 0x386F4000, 0x386F6000, |
| 0x386F8000, 0x386FA000, 0x386FC000, 0x386FE000, |
| 0x38700000, 0x38702000, 0x38704000, 0x38706000, |
| 0x38708000, 0x3870A000, 0x3870C000, 0x3870E000, |
| 0x38710000, 0x38712000, 0x38714000, 0x38716000, |
| 0x38718000, 0x3871A000, 0x3871C000, 0x3871E000, |
| 0x38720000, 0x38722000, 0x38724000, 0x38726000, |
| 0x38728000, 0x3872A000, 0x3872C000, 0x3872E000, |
| 0x38730000, 0x38732000, 0x38734000, 0x38736000, |
| 0x38738000, 0x3873A000, 0x3873C000, 0x3873E000, |
| 0x38740000, 0x38742000, 0x38744000, 0x38746000, |
| 0x38748000, 0x3874A000, 0x3874C000, 0x3874E000, |
| 0x38750000, 0x38752000, 0x38754000, 0x38756000, |
| 0x38758000, 0x3875A000, 0x3875C000, 0x3875E000, |
| 0x38760000, 0x38762000, 0x38764000, 0x38766000, |
| 0x38768000, 0x3876A000, 0x3876C000, 0x3876E000, |
| 0x38770000, 0x38772000, 0x38774000, 0x38776000, |
| 0x38778000, 0x3877A000, 0x3877C000, 0x3877E000, |
| 0x38780000, 0x38782000, 0x38784000, 0x38786000, |
| 0x38788000, 0x3878A000, 0x3878C000, 0x3878E000, |
| 0x38790000, 0x38792000, 0x38794000, 0x38796000, |
| 0x38798000, 0x3879A000, 0x3879C000, 0x3879E000, |
| 0x387A0000, 0x387A2000, 0x387A4000, 0x387A6000, |
| 0x387A8000, 0x387AA000, 0x387AC000, 0x387AE000, |
| 0x387B0000, 0x387B2000, 0x387B4000, 0x387B6000, |
| 0x387B8000, 0x387BA000, 0x387BC000, 0x387BE000, |
| 0x387C0000, 0x387C2000, 0x387C4000, 0x387C6000, |
| 0x387C8000, 0x387CA000, 0x387CC000, 0x387CE000, |
| 0x387D0000, 0x387D2000, 0x387D4000, 0x387D6000, |
| 0x387D8000, 0x387DA000, 0x387DC000, 0x387DE000, |
| 0x387E0000, 0x387E2000, 0x387E4000, 0x387E6000, |
| 0x387E8000, 0x387EA000, 0x387EC000, 0x387EE000, |
| 0x387F0000, 0x387F2000, 0x387F4000, 0x387F6000, |
| 0x387F8000, 0x387FA000, 0x387FC000, 0x387FE000}; |
| static const uint32 exponent_table[64] = { |
| 0x00000000, 0x00800000, 0x01000000, 0x01800000, |
| 0x02000000, 0x02800000, 0x03000000, 0x03800000, |
| 0x04000000, 0x04800000, 0x05000000, 0x05800000, |
| 0x06000000, 0x06800000, 0x07000000, 0x07800000, |
| 0x08000000, 0x08800000, 0x09000000, 0x09800000, |
| 0x0A000000, 0x0A800000, 0x0B000000, 0x0B800000, |
| 0x0C000000, 0x0C800000, 0x0D000000, 0x0D800000, |
| 0x0E000000, 0x0E800000, 0x0F000000, 0x47800000, |
| 0x80000000, 0x80800000, 0x81000000, 0x81800000, |
| 0x82000000, 0x82800000, 0x83000000, 0x83800000, |
| 0x84000000, 0x84800000, 0x85000000, 0x85800000, |
| 0x86000000, 0x86800000, 0x87000000, 0x87800000, |
| 0x88000000, 0x88800000, 0x89000000, 0x89800000, |
| 0x8A000000, 0x8A800000, 0x8B000000, 0x8B800000, |
| 0x8C000000, 0x8C800000, 0x8D000000, 0x8D800000, |
| 0x8E000000, 0x8E800000, 0x8F000000, 0xC7800000}; |
| static const unsigned short offset_table[64] = { |
| 0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, |
| 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, |
| 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, |
| 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, |
| 0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, |
| 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, |
| 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, |
| 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024}; |
| uint32 bits = mantissa_table[offset_table[value >> 10] + |
| (value & 0x3FF)] + |
| exponent_table[value >> 10]; |
| // return *reinterpret_cast<float*>(&bits); |
| ////violating strict aliasing! |
| float out; |
| std::memcpy(&out, &bits, sizeof(float)); |
| return out; |
| } |
| |
| /// Convert half-precision to IEEE double-precision. |
| /// \param value binary representation of half-precision value |
| /// \return double-precision value |
| inline double half2float_impl(uint16 value, double, true_type) { |
| typedef bits<float>::type uint32; |
| typedef bits<double>::type uint64; |
| uint32 hi = static_cast<uint32>(value & 0x8000) << 16; |
| int abs = value & 0x7FFF; |
| if (abs) { |
| hi |= 0x3F000000 << static_cast<unsigned>(abs >= 0x7C00); |
| for (; abs < 0x400; abs <<= 1, hi -= 0x100000) |
| ; |
| hi += static_cast<uint32>(abs) << 10; |
| } |
| uint64 bits = static_cast<uint64>(hi) << 32; |
| // return |
| //*reinterpret_cast<double*>(&bits); |
| ////violating strict aliasing! |
| double out; |
| std::memcpy(&out, &bits, sizeof(double)); |
| return out; |
| } |
| |
| /// Convert half-precision to non-IEEE floating point. |
| /// \tparam T type to convert to (builtin integer type) |
| /// \param value binary representation of half-precision value |
| /// \return floating point value |
| template <typename T> |
| T half2float_impl(uint16 value, T, ...) { |
| T out; |
| int abs = value & 0x7FFF; |
| if (abs > 0x7C00) |
| out = std::numeric_limits<T>::has_quiet_NaN |
| ? std::numeric_limits<T>::quiet_NaN() |
| : T(); |
| else if (abs == 0x7C00) |
| out = std::numeric_limits<T>::has_infinity |
| ? std::numeric_limits<T>::infinity() |
| : std::numeric_limits<T>::max(); |
| else if (abs > 0x3FF) |
| out = std::ldexp(static_cast<T>((abs & 0x3FF) | 0x400), |
| (abs >> 10) - 25); |
| else |
| out = std::ldexp(static_cast<T>(abs), -24); |
| return (value & 0x8000) ? -out : out; |
| } |
| |
| /// Convert half-precision to floating point. |
| /// \tparam T type to convert to (builtin integer type) |
| /// \param value binary representation of half-precision value |
| /// \return floating point value |
| template <typename T> |
| T half2float(uint16 value) { |
| return half2float_impl( |
| value, T(), |
| bool_type < std::numeric_limits<T>::is_iec559 && |
| sizeof(typename bits<T>::type) == sizeof(T) > ()); |
| } |
| |
| /// Convert half-precision floating point to integer. |
| /// \tparam R rounding mode to use, `std::round_indeterminate` |
| /// for fastest rounding \tparam E `true` for round to even, |
| /// `false` for round away from zero \tparam T type to convert |
| /// to (buitlin integer type with at least 16 bits precision, |
| /// excluding any implicit sign bits) \param value binary |
| /// representation of half-precision value \return integral |
| /// value |
| template <std::float_round_style R, bool E, typename T> |
| T half2int_impl(uint16 value) { |
| #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS |
| static_assert(std::is_integral<T>::value, |
| "half to int conversion only supports builtin " |
| "integer types"); |
| #endif |
| unsigned int e = value & 0x7FFF; |
| if (e >= 0x7C00) |
| return (value & 0x8000) ? std::numeric_limits<T>::min() |
| : std::numeric_limits<T>::max(); |
| if (e < 0x3800) { |
| if (R == std::round_toward_infinity) |
| return T(~(value >> 15) & (e != 0)); |
| else if (R == std::round_toward_neg_infinity) |
| return -T(value > 0x8000); |
| return T(); |
| } |
| unsigned int m = (value & 0x3FF) | 0x400; |
| e >>= 10; |
| if (e < 25) { |
| if (R == std::round_to_nearest) |
| m += (1 << (24 - e)) - (~(m >> (25 - e)) & E); |
| else if (R == std::round_toward_infinity) |
| m += ((value >> 15) - 1) & ((1 << (25 - e)) - 1U); |
| else if (R == std::round_toward_neg_infinity) |
| m += -(value >> 15) & ((1 << (25 - e)) - 1U); |
| m >>= 25 - e; |
| } else |
| m <<= e - 25; |
| return (value & 0x8000) ? -static_cast<T>(m) |
| : static_cast<T>(m); |
| } |
| |
| /// Convert half-precision floating point to integer. |
| /// \tparam R rounding mode to use, `std::round_indeterminate` |
| /// for fastest rounding \tparam T type to convert to (buitlin |
| /// integer type with at least 16 bits precision, excluding any |
| /// implicit sign bits) \param value binary representation of |
| /// half-precision value \return integral value |
| template <std::float_round_style R, typename T> |
| T half2int(uint16 value) { |
| return half2int_impl<R, HALF_ROUND_TIES_TO_EVEN, T>(value); |
| } |
| |
| /// Convert half-precision floating point to integer using |
| /// round-to-nearest-away-from-zero. \tparam T type to convert |
| /// to (buitlin integer type with at least 16 bits precision, |
| /// excluding any implicit sign bits) \param value binary |
| /// representation of half-precision value \return integral |
| /// value |
| template <typename T> |
| T half2int_up(uint16 value) { |
| return half2int_impl<std::round_to_nearest, 0, T>(value); |
| } |
| |
| /// Round half-precision number to nearest integer value. |
| /// \tparam R rounding mode to use, `std::round_indeterminate` |
| /// for fastest rounding \tparam E `true` for round to even, |
| /// `false` for round away from zero \param value binary |
| /// representation of half-precision value \return |
| /// half-precision bits for nearest integral value |
| template <std::float_round_style R, bool E> |
| uint16 round_half_impl(uint16 value) { |
| unsigned int e = value & 0x7FFF; |
| uint16 result = value; |
| if (e < 0x3C00) { |
| result &= 0x8000; |
| if (R == std::round_to_nearest) |
| result |= 0x3C00U & -(e >= (0x3800 + E)); |
| else if (R == std::round_toward_infinity) |
| result |= 0x3C00U & -(~(value >> 15) & (e != 0)); |
| else if (R == std::round_toward_neg_infinity) |
| result |= 0x3C00U & -(value > 0x8000); |
| } else if (e < 0x6400) { |
| e = 25 - (e >> 10); |
| unsigned int mask = (1 << e) - 1; |
| if (R == std::round_to_nearest) |
| result += (1 << (e - 1)) - (~(result >> e) & E); |
| else if (R == std::round_toward_infinity) |
| result += mask & ((value >> 15) - 1); |
| else if (R == std::round_toward_neg_infinity) |
| result += mask & -(value >> 15); |
| result &= ~mask; |
| } |
| return result; |
| } |
| |
| /// Round half-precision number to nearest integer value. |
| /// \tparam R rounding mode to use, `std::round_indeterminate` |
| /// for fastest rounding \param value binary representation of |
| /// half-precision value \return half-precision bits for nearest |
| /// integral value |
| template <std::float_round_style R> |
| uint16 round_half(uint16 value) { |
| return round_half_impl<R, HALF_ROUND_TIES_TO_EVEN>(value); |
| } |
| |
| /// Round half-precision number to nearest integer value using |
| /// round-to-nearest-away-from-zero. \param value binary |
| /// representation of half-precision value \return |
| /// half-precision bits for nearest integral value |
| inline uint16 round_half_up(uint16 value) { |
| return round_half_impl<std::round_to_nearest, 0>(value); |
| } |
| /// \} |
| |
| struct functions; |
| template<typename> struct unary_specialized; |
| template<typename,typename> struct binary_specialized; |
| template<typename,typename,std::float_round_style> struct half_caster; |
| } |
| |
| /// Half-precision floating point type. |
| /// This class implements an IEEE-conformant half-precision floating |
| /// point type with the usual arithmetic operators and conversions. It |
| /// is implicitly convertible to single-precision floating point, which |
| /// makes artihmetic expressions and functions with mixed-type operands |
| /// to be of the most precise operand type. Additionally all arithmetic |
| /// operations (and many mathematical functions) are carried out in |
| /// single-precision internally. All conversions from single- to |
| /// half-precision are done using the library's default rounding mode, |
| /// but temporary results inside chained arithmetic expressions are kept |
| /// in single-precision as long as possible (while of course still |
| /// maintaining a strong half-precision type). |
| /// |
| /// According to the C++98/03 definition, the half type is not a POD |
| /// type. But according to C++11's less strict and extended definitions |
| /// it is both a standard layout type and a trivially copyable type |
| /// (even if not a POD type), which means it can be |
| /// standard-conformantly copied using raw binary copies. But in this |
| /// context some more words about the actual size of the type. Although |
| /// the half is representing an IEEE 16-bit type, it does not |
| /// neccessarily have to be of exactly 16-bits size. But on any |
| /// reasonable implementation the actual binary representation of this |
| /// type will most probably not ivolve any additional "magic" or padding |
| /// beyond the simple binary representation of the underlying 16-bit |
| /// IEEE number, even if not strictly guaranteed by the standard. But |
| /// even then it only has an actual size of 16 bits if your C++ |
| /// implementation supports an unsigned integer type of exactly 16 bits |
| /// width. But this should be the case on nearly any reasonable |
| /// platform. |
| /// |
| /// So if your C++ implementation is not totally exotic or imposes |
| /// special alignment requirements, it is a reasonable assumption that |
| /// the data of a half is just comprised of the 2 bytes of the |
| /// underlying IEEE representation. |
| class half { |
| friend struct detail::functions; |
| friend struct detail::unary_specialized<half>; |
| friend struct detail::binary_specialized<half, half>; |
| template <typename, typename, std::float_round_style> |
| friend struct detail::half_caster; |
| friend class std::numeric_limits<half>; |
| #if HALF_ENABLE_CPP11_HASH |
| friend struct std::hash<half>; |
| #endif |
| #if HALF_ENABLE_CPP11_USER_LITERALS |
| friend half literal::operator""_h(long double); |
| #endif |
| |
| public: |
| /// Default constructor. |
| /// This initializes the half to 0. Although this does not match |
| /// the builtin types' default-initialization semantics and may |
| /// be less efficient than no initialization, it is needed to |
| /// provide proper value-initialization semantics. |
| HALF_CONSTEXPR half() HALF_NOEXCEPT : data_() {} |
| |
| /// Copy constructor. |
| /// \tparam T type of concrete half expression |
| /// \param rhs half expression to copy from |
| half(detail::expr rhs) |
| : data_( |
| detail::float2half<round_style>(static_cast<float>(rhs))) {} |
| |
| /// Conversion constructor. |
| /// \param rhs float to convert |
| explicit half(float rhs) |
| : data_(detail::float2half<round_style>(rhs)) {} |
| |
| /// Conversion to single-precision. |
| /// \return single precision value representing expression value |
| operator float() const { return detail::half2float<float>(data_); } |
| |
| /// Assignment operator. |
| /// \tparam T type of concrete half expression |
| /// \param rhs half expression to copy from |
| /// \return reference to this half |
| half &operator=(detail::expr rhs) { |
| return *this = static_cast<float>(rhs); |
| } |
| |
| /// Arithmetic assignment. |
| /// \tparam T type of concrete half expression |
| /// \param rhs half expression to add |
| /// \return reference to this half |
| template <typename T> |
| typename detail::enable<half &, T>::type operator+=(T rhs) { |
| return *this += static_cast<float>(rhs); |
| } |
| |
| /// Arithmetic assignment. |
| /// \tparam T type of concrete half expression |
| /// \param rhs half expression to subtract |
| /// \return reference to this half |
| template <typename T> |
| typename detail::enable<half &, T>::type operator-=(T rhs) { |
| return *this -= static_cast<float>(rhs); |
| } |
| |
| /// Arithmetic assignment. |
| /// \tparam T type of concrete half expression |
| /// \param rhs half expression to multiply with |
| /// \return reference to this half |
| template <typename T> |
| typename detail::enable<half &, T>::type operator*=(T rhs) { |
| return *this *= static_cast<float>(rhs); |
| } |
| |
| /// Arithmetic assignment. |
| /// \tparam T type of concrete half expression |
| /// \param rhs half expression to divide by |
| /// \return reference to this half |
| template <typename T> |
| typename detail::enable<half &, T>::type operator/=(T rhs) { |
| return *this /= static_cast<float>(rhs); |
| } |
| |
| /// Assignment operator. |
| /// \param rhs single-precision value to copy from |
| /// \return reference to this half |
| half &operator=(float rhs) { |
| data_ = detail::float2half<round_style>(rhs); |
| return *this; |
| } |
| |
| /// Arithmetic assignment. |
| /// \param rhs single-precision value to add |
| /// \return reference to this half |
| half &operator+=(float rhs) { |
| data_ = detail::float2half<round_style>( |
| detail::half2float<float>(data_) + rhs); |
| return *this; |
| } |
| |
| /// Arithmetic assignment. |
| /// \param rhs single-precision value to subtract |
| /// \return reference to this half |
| half &operator-=(float rhs) { |
| data_ = detail::float2half<round_style>( |
| detail::half2float<float>(data_) - rhs); |
| return *this; |
| } |
| |
| /// Arithmetic assignment. |
| /// \param rhs single-precision value to multiply with |
| /// \return reference to this half |
| half &operator*=(float rhs) { |
| data_ = detail::float2half<round_style>( |
| detail::half2float<float>(data_) * rhs); |
| return *this; |
| } |
| |
| /// Arithmetic assignment. |
| /// \param rhs single-precision value to divide by |
| /// \return reference to this half |
| half &operator/=(float rhs) { |
| data_ = detail::float2half<round_style>( |
| detail::half2float<float>(data_) / rhs); |
| return *this; |
| } |
| |
| /// Prefix increment. |
| /// \return incremented half value |
| half &operator++() { return *this += 1.0f; } |
| |
| /// Prefix decrement. |
| /// \return decremented half value |
| half &operator--() { return *this -= 1.0f; } |
| |
| /// Postfix increment. |
| /// \return non-incremented half value |
| half operator++(int) { |
| half out(*this); |
| ++*this; |
| return out; |
| } |
| |
| /// Postfix decrement. |
| /// \return non-decremented half value |
| half operator--(int) { |
| half out(*this); |
| --*this; |
| return out; |
| } |
| |
| private: |
| /// Rounding mode to use |
| static const std::float_round_style round_style = |
| (std::float_round_style)(HALF_ROUND_STYLE); |
| |
| /// Constructor. |
| /// \param bits binary representation to set half to |
| HALF_CONSTEXPR half(detail::binary_t, |
| detail::uint16 bits) HALF_NOEXCEPT : data_(bits) { |
| } |
| |
| /// Internal binary representation |
| detail::uint16 data_; |
| }; |
| |
| #if HALF_ENABLE_CPP11_USER_LITERALS |
| namespace literal |
| { |
| /// Half literal. |
| /// While this returns an actual half-precision value, half literals can |
| /// unfortunately not be constant expressions due to rather involved |
| /// conversions. \param value literal value \return half with given |
| /// value (if representable) |
| inline half operator""_h(long double value) { |
| return half(detail::binary, |
| detail::float2half<half::round_style>(value)); |
| } |
| } // namespace literal |
| #endif |
| |
| namespace detail |
| { |
| /// Wrapper implementing unspecialized half-precision functions. |
| struct functions |
| { |
| /// Addition implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return Half-precision sum stored in single-precision |
| static expr plus(float x, float y) { return expr(x+y); } |
| |
| /// Subtraction implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return Half-precision difference stored in single-precision |
| static expr minus(float x, float y) { return expr(x-y); } |
| |
| /// Multiplication implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return Half-precision product stored in single-precision |
| static expr multiplies(float x, float y) { return expr(x*y); } |
| |
| /// Division implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return Half-precision quotient stored in single-precision |
| static expr divides(float x, float y) { return expr(x/y); } |
| |
| /// Output implementation. |
| /// \param out stream to write to |
| /// \param arg value to write |
| /// \return reference to stream |
| template<typename charT,typename traits> static std::basic_ostream<charT,traits>& write(std::basic_ostream<charT,traits> &out, float arg) { return out << arg; } |
| |
| /// Input implementation. |
| /// \param in stream to read from |
| /// \param arg half to read into |
| /// \return reference to stream |
| template<typename charT,typename traits> static std::basic_istream<charT,traits>& read(std::basic_istream<charT,traits> &in, half &arg) |
| { |
| float f; |
| if(in >> f) |
| arg = f; |
| return in; |
| } |
| |
| /// Modulo implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return Half-precision division remainder stored in |
| /// single-precision |
| static expr fmod(float x, float y) { |
| return expr(std::fmod(x, y)); |
| } |
| |
| /// Remainder implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return Half-precision division remainder stored in |
| /// single-precision |
| static expr remainder(float x, float y) { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::remainder(x, y)); |
| #else |
| if (builtin_isnan(x) || builtin_isnan(y)) |
| return expr( |
| std::numeric_limits<float>::quiet_NaN()); |
| float ax = std::fabs(x), ay = std::fabs(y); |
| if (ax >= 65536.0f || ay < std::ldexp(1.0f, -24)) |
| return expr( |
| std::numeric_limits<float>::quiet_NaN()); |
| if (ay >= 65536.0f) return expr(x); |
| if (ax == ay) |
| return expr(builtin_signbit(x) ? -0.0f : 0.0f); |
| ax = std::fmod(ax, ay + ay); |
| float y2 = 0.5f * ay; |
| if (ax > y2) { |
| ax -= ay; |
| if (ax >= y2) ax -= ay; |
| } |
| return expr(builtin_signbit(x) ? -ax : ax); |
| #endif |
| } |
| |
| /// Remainder implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \param quo address to store quotient bits at |
| /// \return Half-precision division remainder stored in |
| /// single-precision |
| static expr remquo(float x, float y, int *quo) { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::remquo(x, y, quo)); |
| #else |
| if (builtin_isnan(x) || builtin_isnan(y)) |
| return expr( |
| std::numeric_limits<float>::quiet_NaN()); |
| bool sign = builtin_signbit(x), |
| qsign = |
| static_cast<bool>(sign ^ builtin_signbit(y)); |
| float ax = std::fabs(x), ay = std::fabs(y); |
| if (ax >= 65536.0f || ay < std::ldexp(1.0f, -24)) |
| return expr( |
| std::numeric_limits<float>::quiet_NaN()); |
| if (ay >= 65536.0f) return expr(x); |
| if (ax == ay) |
| return *quo = qsign ? -1 : 1, |
| expr(sign ? -0.0f : 0.0f); |
| ax = std::fmod(ax, 8.0f * ay); |
| int cquo = 0; |
| if (ax >= 4.0f * ay) { |
| ax -= 4.0f * ay; |
| cquo += 4; |
| } |
| if (ax >= 2.0f * ay) { |
| ax -= 2.0f * ay; |
| cquo += 2; |
| } |
| float y2 = 0.5f * ay; |
| if (ax > y2) { |
| ax -= ay; |
| ++cquo; |
| if (ax >= y2) { |
| ax -= ay; |
| ++cquo; |
| } |
| } |
| return *quo = qsign ? -cquo : cquo, |
| expr(sign ? -ax : ax); |
| #endif |
| } |
| |
| /// Positive difference implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return Positive difference stored in |
| /// single-precision |
| static expr fdim(float x, float y) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::fdim(x, y)); |
| #else |
| return expr((x <= y) ? 0.0f : (x - y)); |
| #endif |
| } |
| |
| /// Fused multiply-add implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \param z third operand |
| /// \return \a x * \a y + \a z stored in single-precision |
| static expr fma(float x, float y, float z) |
| { |
| #if HALF_ENABLE_CPP11_CMATH && defined(FP_FAST_FMAF) |
| return expr(std::fma(x, y, z)); |
| #else |
| return expr(x*y+z); |
| #endif |
| } |
| |
| /// Get NaN. |
| /// \return Half-precision quiet NaN |
| static half nanh() { return half(binary, 0x7FFF); } |
| |
| /// Exponential implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr exp(float arg) { return expr(std::exp(arg)); } |
| |
| /// Exponential implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr expm1(float arg) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::expm1(arg)); |
| #else |
| return expr(static_cast<float>( |
| std::exp(static_cast<double>(arg)) - 1.0)); |
| #endif |
| } |
| |
| /// Binary exponential implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr exp2(float arg) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::exp2(arg)); |
| #else |
| return expr(static_cast<float>(std::exp( |
| arg * 0.69314718055994530941723212145818))); |
| #endif |
| } |
| |
| /// Logarithm implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr log(float arg) { return expr(std::log(arg)); } |
| |
| /// Common logarithm implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr log10(float arg) { return expr(std::log10(arg)); } |
| |
| /// Logarithm implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr log1p(float arg) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::log1p(arg)); |
| #else |
| return expr(static_cast<float>(std::log(1.0 + arg))); |
| #endif |
| } |
| |
| /// Binary logarithm implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr log2(float arg) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::log2(arg)); |
| #else |
| return expr(static_cast<float>( |
| std::log(static_cast<double>(arg)) * |
| 1.4426950408889634073599246810019)); |
| #endif |
| } |
| |
| /// Square root implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr sqrt(float arg) { return expr(std::sqrt(arg)); } |
| |
| /// Cubic root implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr cbrt(float arg) { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::cbrt(arg)); |
| #else |
| if (builtin_isnan(arg) || builtin_isinf(arg)) |
| return expr(arg); |
| return expr( |
| builtin_signbit(arg) |
| ? -static_cast<float>(std::pow( |
| -static_cast<double>(arg), 1.0 / 3.0)) |
| : static_cast<float>(std::pow( |
| static_cast<double>(arg), 1.0 / 3.0))); |
| #endif |
| } |
| |
| /// Hypotenuse implementation. |
| /// \param x first argument |
| /// \param y second argument |
| /// \return function value stored in single-preicision |
| static expr hypot(float x, float y) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::hypot(x, y)); |
| #else |
| return expr( |
| (builtin_isinf(x) || builtin_isinf(y)) |
| ? std::numeric_limits<float>::infinity() |
| : static_cast<float>( |
| std::sqrt(static_cast<double>(x) * x + |
| static_cast<double>(y) * y))); |
| #endif |
| } |
| |
| /// Power implementation. |
| /// \param base value to exponentiate |
| /// \param exp power to expontiate to |
| /// \return function value stored in single-preicision |
| static expr pow(float base, float exp) { return expr(std::pow(base, exp)); } |
| |
| /// Sine implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr sin(float arg) { return expr(std::sin(arg)); } |
| |
| /// Cosine implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr cos(float arg) { return expr(std::cos(arg)); } |
| |
| /// Tan implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr tan(float arg) { return expr(std::tan(arg)); } |
| |
| /// Arc sine implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr asin(float arg) { return expr(std::asin(arg)); } |
| |
| /// Arc cosine implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr acos(float arg) { return expr(std::acos(arg)); } |
| |
| /// Arc tangent implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr atan(float arg) { return expr(std::atan(arg)); } |
| |
| /// Arc tangent implementation. |
| /// \param x first argument |
| /// \param y second argument |
| /// \return function value stored in single-preicision |
| static expr atan2(float x, float y) { return expr(std::atan2(x, y)); } |
| |
| /// Hyperbolic sine implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr sinh(float arg) { return expr(std::sinh(arg)); } |
| |
| /// Hyperbolic cosine implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr cosh(float arg) { return expr(std::cosh(arg)); } |
| |
| /// Hyperbolic tangent implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr tanh(float arg) { return expr(std::tanh(arg)); } |
| |
| /// Hyperbolic area sine implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr asinh(float arg) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::asinh(arg)); |
| #else |
| return expr( |
| (arg == -std::numeric_limits<float>::infinity()) |
| ? arg |
| : static_cast<float>(std::log( |
| arg + std::sqrt(arg * arg + 1.0)))); |
| #endif |
| } |
| |
| /// Hyperbolic area cosine implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr acosh(float arg) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::acosh(arg)); |
| #else |
| return expr( |
| (arg < -1.0f) |
| ? std::numeric_limits<float>::quiet_NaN() |
| : static_cast<float>(std::log( |
| arg + std::sqrt(arg * arg - 1.0)))); |
| #endif |
| } |
| |
| /// Hyperbolic area tangent implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr atanh(float arg) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::atanh(arg)); |
| #else |
| return expr(static_cast<float>( |
| 0.5 * std::log((1.0 + arg) / (1.0 - arg)))); |
| #endif |
| } |
| |
| /// Error function implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr erf(float arg) { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::erf(arg)); |
| #else |
| return expr(static_cast<float>( |
| erf(static_cast<double>(arg)))); |
| #endif |
| } |
| |
| /// Complementary implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr erfc(float arg) { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::erfc(arg)); |
| #else |
| return expr(static_cast<float>( |
| 1.0 - erf(static_cast<double>(arg)))); |
| #endif |
| } |
| |
| /// Gamma logarithm implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr lgamma(float arg) { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::lgamma(arg)); |
| #else |
| if (builtin_isinf(arg)) |
| return expr(std::numeric_limits<float>::infinity()); |
| if (arg < 0.0f) { |
| float i, f = std::modf(-arg, &i); |
| if (f == 0.0f) |
| return expr( |
| std::numeric_limits<float>::infinity()); |
| return expr(static_cast<float>( |
| 1.1447298858494001741434273513531 - |
| std::log(std::abs(std::sin( |
| 3.1415926535897932384626433832795 * f))) - |
| lgamma(1.0 - arg))); |
| } |
| return expr(static_cast<float>( |
| lgamma(static_cast<double>(arg)))); |
| #endif |
| } |
| |
| /// Gamma implementation. |
| /// \param arg function argument |
| /// \return function value stored in single-preicision |
| static expr tgamma(float arg) { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::tgamma(arg)); |
| #else |
| if (arg == 0.0f) |
| return builtin_signbit(arg) |
| ? expr(-std::numeric_limits< |
| float>::infinity()) |
| : expr(std::numeric_limits< |
| float>::infinity()); |
| if (arg < 0.0f) { |
| float i, f = std::modf(-arg, &i); |
| if (f == 0.0f) |
| return expr( |
| std::numeric_limits<float>::quiet_NaN()); |
| double value = |
| 3.1415926535897932384626433832795 / |
| (std::sin(3.1415926535897932384626433832795 * |
| f) * |
| std::exp(lgamma(1.0 - arg))); |
| return expr(static_cast<float>( |
| (std::fmod(i, 2.0f) == 0.0f) ? -value : value)); |
| } |
| if (builtin_isinf(arg)) return expr(arg); |
| return expr(static_cast<float>( |
| std::exp(lgamma(static_cast<double>(arg))))); |
| #endif |
| } |
| |
| /// Floor implementation. |
| /// \param arg value to round |
| /// \return rounded value |
| static half floor(half arg) { |
| return half( |
| binary, |
| round_half<std::round_toward_neg_infinity>( |
| arg.data_)); |
| } |
| |
| /// Ceiling implementation. |
| /// \param arg value to round |
| /// \return rounded value |
| static half ceil(half arg) { |
| return half(binary, |
| round_half<std::round_toward_infinity>( |
| arg.data_)); |
| } |
| |
| /// Truncation implementation. |
| /// \param arg value to round |
| /// \return rounded value |
| static half trunc(half arg) { |
| return half( |
| binary, |
| round_half<std::round_toward_zero>(arg.data_)); |
| } |
| |
| /// Nearest integer implementation. |
| /// \param arg value to round |
| /// \return rounded value |
| static half round(half arg) { |
| return half(binary, round_half_up(arg.data_)); |
| } |
| |
| /// Nearest integer implementation. |
| /// \param arg value to round |
| /// \return rounded value |
| static long lround(half arg) { |
| return detail::half2int_up<long>(arg.data_); |
| } |
| |
| /// Nearest integer implementation. |
| /// \param arg value to round |
| /// \return rounded value |
| static half rint(half arg) { |
| return half(binary, |
| round_half<half::round_style>(arg.data_)); |
| } |
| |
| /// Nearest integer implementation. |
| /// \param arg value to round |
| /// \return rounded value |
| static long lrint(half arg) { |
| return detail::half2int<half::round_style, long>( |
| arg.data_); |
| } |
| |
| #if HALF_ENABLE_CPP11_LONG_LONG |
| /// Nearest integer implementation. |
| /// \param arg value to round |
| /// \return rounded value |
| static long long llround(half arg) { |
| return detail::half2int_up<long long>(arg.data_); |
| } |
| |
| /// Nearest integer implementation. |
| /// \param arg value to round |
| /// \return rounded value |
| static long long llrint(half arg) { |
| return detail::half2int<half::round_style, long long>( |
| arg.data_); |
| } |
| #endif |
| |
| /// Decompression implementation. |
| /// \param arg number to decompress |
| /// \param exp address to store exponent at |
| /// \return normalized significant |
| static half frexp(half arg, int *exp) |
| { |
| int m = arg.data_ & 0x7FFF, e = -14; |
| if (m >= 0x7C00 || !m) return *exp = 0, arg; |
| for (; m < 0x400; m <<= 1, --e) |
| ; |
| return *exp = e + (m >> 10), |
| half(binary, (arg.data_ & 0x8000) | 0x3800 | |
| (m & 0x3FF)); |
| } |
| |
| /// Decompression implementation. |
| /// \param arg number to decompress |
| /// \param iptr address to store integer part at |
| /// \return fractional part |
| static half modf(half arg, half *iptr) |
| { |
| unsigned int e = arg.data_ & 0x7FFF; |
| if (e >= 0x6400) |
| return *iptr = arg, |
| half(binary, |
| arg.data_ & (0x8000U | -(e > 0x7C00))); |
| if (e < 0x3C00) |
| return iptr->data_ = arg.data_ & 0x8000, arg; |
| e >>= 10; |
| unsigned int mask = (1 << (25 - e)) - 1, |
| m = arg.data_ & mask; |
| iptr->data_ = arg.data_ & ~mask; |
| if (!m) return half(binary, arg.data_ & 0x8000); |
| for (; m < 0x400; m <<= 1, --e) |
| ; |
| return half(binary, static_cast<uint16>( |
| (arg.data_ & 0x8000) | |
| (e << 10) | (m & 0x3FF))); |
| } |
| |
| /// Scaling implementation. |
| /// \param arg number to scale |
| /// \param exp power of two to scale by |
| /// \return scaled number |
| static half scalbln(half arg, long exp) |
| { |
| unsigned int m = arg.data_ & 0x7FFF; |
| if (m >= 0x7C00 || !m) return arg; |
| for (; m < 0x400; m <<= 1, --exp) |
| ; |
| exp += m >> 10; |
| uint16 value = arg.data_ & 0x8000; |
| if (exp > 30) { |
| if (half::round_style == std::round_toward_zero) |
| value |= 0x7BFF; |
| else if (half::round_style == |
| std::round_toward_infinity) |
| value |= 0x7C00 - (value >> 15); |
| else if (half::round_style == |
| std::round_toward_neg_infinity) |
| value |= 0x7BFF + (value >> 15); |
| else |
| value |= 0x7C00; |
| } else if (exp > 0) |
| value |= (exp << 10) | (m & 0x3FF); |
| else if (exp > -11) { |
| m = (m & 0x3FF) | 0x400; |
| if (half::round_style == std::round_to_nearest) { |
| m += 1 << -exp; |
| #if HALF_ROUND_TIES_TO_EVEN |
| m -= (m >> (1 - exp)) & 1; |
| #endif |
| } else if (half::round_style == |
| std::round_toward_infinity) |
| m += |
| ((value >> 15) - 1) & ((1 << (1 - exp)) - 1U); |
| else if (half::round_style == |
| std::round_toward_neg_infinity) |
| m += -(value >> 15) & ((1 << (1 - exp)) - 1U); |
| value |= m >> (1 - exp); |
| } else if (half::round_style == |
| std::round_toward_infinity) |
| value -= (value >> 15) - 1; |
| else if (half::round_style == |
| std::round_toward_neg_infinity) |
| value += value >> 15; |
| return half(binary, value); |
| } |
| |
| /// Exponent implementation. |
| /// \param arg number to query |
| /// \return floating point exponent |
| static int ilogb(half arg) |
| { |
| int abs = arg.data_ & 0x7FFF; |
| if (!abs) return FP_ILOGB0; |
| if (abs < 0x7C00) { |
| int exp = (abs >> 10) - 15; |
| if (abs < 0x400) |
| for (; abs < 0x200; abs <<= 1, --exp) |
| ; |
| return exp; |
| } |
| if (abs > 0x7C00) return FP_ILOGBNAN; |
| return INT_MAX; |
| } |
| |
| /// Exponent implementation. |
| /// \param arg number to query |
| /// \return floating point exponent |
| static half logb(half arg) |
| { |
| int abs = arg.data_ & 0x7FFF; |
| if (!abs) return half(binary, 0xFC00); |
| if (abs < 0x7C00) { |
| int exp = (abs >> 10) - 15; |
| if (abs < 0x400) |
| for (; abs < 0x200; abs <<= 1, --exp) |
| ; |
| uint16 bits = (exp < 0) << 15; |
| if (exp) { |
| unsigned int m = std::abs(exp) << 6, e = 18; |
| for (; m < 0x400; m <<= 1, --e) |
| ; |
| bits |= (e << 10) + m; |
| } |
| return half(binary, bits); |
| } |
| if (abs > 0x7C00) return arg; |
| return half(binary, 0x7C00); |
| } |
| |
| /// Enumeration implementation. |
| /// \param from number to increase/decrease |
| /// \param to direction to enumerate into |
| /// \return next representable number |
| static half nextafter(half from, half to) |
| { |
| uint16 fabs = from.data_ & 0x7FFF, tabs = to.data_ & 0x7FFF; |
| if(fabs > 0x7C00) |
| return from; |
| if (tabs > 0x7C00 || from.data_ == to.data_ || |
| !(fabs | tabs)) |
| return to; |
| if(!fabs) |
| return half(binary, (to.data_ & 0x8000) + 1); |
| bool lt = ((fabs == from.data_) |
| ? static_cast<int>(fabs) |
| : -static_cast<int>(fabs)) < |
| ((tabs == to.data_) |
| ? static_cast<int>(tabs) |
| : -static_cast<int>(tabs)); |
| return half(binary, |
| from.data_ + |
| (((from.data_ >> 15) ^ |
| static_cast<unsigned>(lt)) |
| << 1) - |
| 1); |
| } |
| |
| /// Enumeration implementation. |
| /// \param from number to increase/decrease |
| /// \param to direction to enumerate into |
| /// \return next representable number |
| static half nexttoward(half from, long double to) |
| { |
| if(isnan(from)) |
| return from; |
| long double lfrom = static_cast<long double>(from); |
| if(builtin_isnan(to) || lfrom == to) |
| return half(static_cast<float>(to)); |
| if(!(from.data_&0x7FFF)) |
| return half(binary, |
| (static_cast<detail::uint16>( |
| builtin_signbit(to)) |
| << 15) + |
| 1); |
| return half( |
| binary, |
| from.data_ + |
| (((from.data_ >> 15) ^ |
| static_cast<unsigned>(lfrom < to)) |
| << 1) - |
| 1); |
| } |
| |
| /// Sign implementation |
| /// \param x first operand |
| /// \param y second operand |
| /// \return composed value |
| static half copysign(half x, half y) { |
| return half(binary, |
| x.data_ ^ ((x.data_ ^ y.data_) & 0x8000)); |
| } |
| |
| /// Classification implementation. |
| /// \param arg value to classify |
| /// \retval true if infinite number |
| /// \retval false else |
| static int fpclassify(half arg) |
| { |
| unsigned int abs = arg.data_ & 0x7FFF; |
| return abs ? ((abs > 0x3FF) |
| ? ((abs >= 0x7C00) |
| ? ((abs > 0x7C00) |
| ? FP_NAN |
| : FP_INFINITE) |
| : FP_NORMAL) |
| : FP_SUBNORMAL) |
| : FP_ZERO; |
| } |
| |
| /// Classification implementation. |
| /// \param arg value to classify |
| /// \retval true if finite number |
| /// \retval false else |
| static bool isfinite(half arg) { return (arg.data_&0x7C00) != 0x7C00; } |
| |
| /// Classification implementation. |
| /// \param arg value to classify |
| /// \retval true if infinite number |
| /// \retval false else |
| static bool isinf(half arg) { return (arg.data_&0x7FFF) == 0x7C00; } |
| |
| /// Classification implementation. |
| /// \param arg value to classify |
| /// \retval true if not a number |
| /// \retval false else |
| static bool isnan(half arg) { return (arg.data_&0x7FFF) > 0x7C00; } |
| |
| /// Classification implementation. |
| /// \param arg value to classify |
| /// \retval true if normal number |
| /// \retval false else |
| static bool isnormal(half arg) { return ((arg.data_&0x7C00)!=0) & ((arg.data_&0x7C00)!=0x7C00); } |
| |
| /// Sign bit implementation. |
| /// \param arg value to check |
| /// \retval true if signed |
| /// \retval false if unsigned |
| static bool signbit(half arg) { return (arg.data_&0x8000) != 0; } |
| |
| /// Comparison implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if operands equal |
| /// \retval false else |
| static bool isequal(half x, half y) { return (x.data_==y.data_ || !((x.data_|y.data_)&0x7FFF)) && !isnan(x); } |
| |
| /// Comparison implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if operands not equal |
| /// \retval false else |
| static bool isnotequal(half x, half y) { return (x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF)) || isnan(x); } |
| |
| /// Comparison implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if \a x > \a y |
| /// \retval false else |
| static bool isgreater(half x, half y) { |
| int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF; |
| return xabs <= 0x7C00 && yabs <= 0x7C00 && |
| (((xabs == x.data_) ? xabs : -xabs) > |
| ((yabs == y.data_) ? yabs : -yabs)); |
| } |
| |
| /// Comparison implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if \a x >= \a y |
| /// \retval false else |
| static bool isgreaterequal(half x, half y) { |
| int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF; |
| return xabs <= 0x7C00 && yabs <= 0x7C00 && |
| (((xabs == x.data_) ? xabs : -xabs) >= |
| ((yabs == y.data_) ? yabs : -yabs)); |
| } |
| |
| /// Comparison implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if \a x < \a y |
| /// \retval false else |
| static bool isless(half x, half y) { |
| int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF; |
| return xabs <= 0x7C00 && yabs <= 0x7C00 && |
| (((xabs == x.data_) ? xabs : -xabs) < |
| ((yabs == y.data_) ? yabs : -yabs)); |
| } |
| |
| /// Comparison implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if \a x <= \a y |
| /// \retval false else |
| static bool islessequal(half x, half y) { |
| int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF; |
| return xabs <= 0x7C00 && yabs <= 0x7C00 && |
| (((xabs == x.data_) ? xabs : -xabs) <= |
| ((yabs == y.data_) ? yabs : -yabs)); |
| } |
| |
| /// Comparison implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if either \a x > \a y nor \a x < \a y |
| /// \retval false else |
| static bool islessgreater(half x, half y) { |
| int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF; |
| if (xabs > 0x7C00 || yabs > 0x7C00) return false; |
| int a = (xabs == x.data_) ? xabs : -xabs, |
| b = (yabs == y.data_) ? yabs : -yabs; |
| return a < b || a > b; |
| } |
| |
| /// Comparison implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if operand unordered |
| /// \retval false else |
| static bool isunordered(half x, half y) { return isnan(x) || isnan(y); } |
| |
| private: |
| static double erf(double arg) { |
| if (builtin_isinf(arg)) |
| return (arg < 0.0) ? -1.0 : 1.0; |
| double x2 = arg * arg, ax2 = 0.147 * x2, |
| value = std::sqrt( |
| 1.0 - |
| std::exp( |
| -x2 * |
| (1.2732395447351626861510701069801 + |
| ax2) / |
| (1.0 + ax2))); |
| return builtin_signbit(arg) ? -value : value; |
| } |
| |
| static double lgamma(double arg) { |
| double v = 1.0; |
| for (; arg < 8.0; ++arg) v *= arg; |
| double w = 1.0 / (arg * arg); |
| return (((((((-0.02955065359477124183006535947712 * |
| w + |
| 0.00641025641025641025641025641026) * |
| w + |
| -0.00191752691752691752691752691753) * |
| w + |
| 8.4175084175084175084175084175084e-4) * |
| w + |
| -5.952380952380952380952380952381e-4) * |
| w + |
| 7.9365079365079365079365079365079e-4) * |
| w + |
| -0.00277777777777777777777777777778) * |
| w + |
| 0.08333333333333333333333333333333) / |
| arg + |
| 0.91893853320467274178032973640562 - |
| std::log(v) - arg + |
| (arg - 0.5) * std::log(arg); |
| } |
| }; |
| |
| /// Wrapper for unary half-precision functions needing specialization for individual argument types. |
| /// \tparam T argument type |
| template<typename T> struct unary_specialized |
| { |
| /// Negation implementation. |
| /// \param arg value to negate |
| /// \return negated value |
| static HALF_CONSTEXPR half negate(half arg) { |
| return half(binary, arg.data_ ^ 0x8000); |
| } |
| |
| /// Absolute value implementation. |
| /// \param arg function argument |
| /// \return absolute value |
| static half fabs(half arg) { |
| return half(binary, arg.data_ & 0x7FFF); |
| } |
| }; |
| template<> struct unary_specialized<expr> |
| { |
| static HALF_CONSTEXPR expr negate(float arg) { return expr(-arg); } |
| static expr fabs(float arg) { return expr(std::fabs(arg)); } |
| }; |
| |
| /// Wrapper for binary half-precision functions needing specialization for individual argument types. |
| /// \tparam T first argument type |
| /// \tparam U first argument type |
| template<typename T,typename U> struct binary_specialized |
| { |
| /// Minimum implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return minimum value |
| static expr fmin(float x, float y) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::fmin(x, y)); |
| #else |
| if (builtin_isnan(x)) return expr(y); |
| if (builtin_isnan(y)) return expr(x); |
| return expr(std::min(x, y)); |
| #endif |
| } |
| |
| /// Maximum implementation. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return maximum value |
| static expr fmax(float x, float y) |
| { |
| #if HALF_ENABLE_CPP11_CMATH |
| return expr(std::fmax(x, y)); |
| #else |
| if (builtin_isnan(x)) return expr(y); |
| if (builtin_isnan(y)) return expr(x); |
| return expr(std::max(x, y)); |
| #endif |
| } |
| }; |
| template<> struct binary_specialized<half,half> |
| { |
| static half fmin(half x, half y) { |
| int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF; |
| if (xabs > 0x7C00) return y; |
| if (yabs > 0x7C00) return x; |
| return (((xabs == x.data_) ? xabs : -xabs) > |
| ((yabs == y.data_) ? yabs : -yabs)) |
| ? y |
| : x; |
| } |
| static half fmax(half x, half y) { |
| int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF; |
| if (xabs > 0x7C00) return y; |
| if (yabs > 0x7C00) return x; |
| return (((xabs == x.data_) ? xabs : -xabs) < |
| ((yabs == y.data_) ? yabs : -yabs)) |
| ? y |
| : x; |
| } |
| }; |
| |
| /// Helper class for half casts. |
| /// This class template has to be specialized for all valid cast |
| /// argument to define an appropriate static `cast` member |
| /// function and a corresponding `type` member denoting its |
| /// return type. \tparam T destination type \tparam U source |
| /// type \tparam R rounding mode to use |
| template <typename T, typename U, |
| std::float_round_style R = |
| (std::float_round_style)(HALF_ROUND_STYLE)> |
| struct half_caster {}; |
| template <typename U, std::float_round_style R> |
| struct half_caster<half, U, R> { |
| #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS |
| static_assert( |
| std::is_arithmetic<U>::value, |
| "half_cast from non-arithmetic type unsupported"); |
| #endif |
| |
| static half cast(U arg) { |
| return cast_impl(arg, is_float<U>()); |
| }; |
| |
| private: |
| static half cast_impl(U arg, true_type) { |
| return half(binary, float2half<R>(arg)); |
| } |
| static half cast_impl(U arg, false_type) { |
| return half(binary, int2half<R>(arg)); |
| } |
| }; |
| template<typename T,std::float_round_style R> struct half_caster<T,half,R> |
| { |
| #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS |
| static_assert(std::is_arithmetic<T>::value, |
| "half_cast to non-arithmetic type unsupported"); |
| #endif |
| |
| static T cast(half arg) { |
| return cast_impl(arg, is_float<T>()); |
| } |
| |
| private: |
| static T cast_impl(half arg, true_type) { |
| return half2float<T>(arg.data_); |
| } |
| static T cast_impl(half arg, false_type) { |
| return half2int<R, T>(arg.data_); |
| } |
| }; |
| template <typename T, std::float_round_style R> |
| struct half_caster<T, expr, R> { |
| #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS |
| static_assert(std::is_arithmetic<T>::value, |
| "half_cast to non-arithmetic type unsupported"); |
| #endif |
| |
| static T cast(expr arg) { |
| return cast_impl(arg, is_float<T>()); |
| } |
| |
| private: |
| static T cast_impl(float arg, true_type) { |
| return static_cast<T>(arg); |
| } |
| static T cast_impl(half arg, false_type) { |
| return half2int<R, T>(arg.data_); |
| } |
| }; |
| template <std::float_round_style R> |
| struct half_caster<half, half, R> { |
| static half cast(half arg) { return arg; } |
| }; |
| template <std::float_round_style R> |
| struct half_caster<half, expr, R> : half_caster<half, half, R> { |
| }; |
| |
| /// \name Comparison operators |
| /// \{ |
| |
| /// Comparison for equality. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if operands equal |
| /// \retval false else |
| template<typename T,typename U> typename enable<bool,T,U>::type operator==(T x, U y) { return functions::isequal(x, y); } |
| |
| /// Comparison for inequality. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if operands not equal |
| /// \retval false else |
| template<typename T,typename U> typename enable<bool,T,U>::type operator!=(T x, U y) { return functions::isnotequal(x, y); } |
| |
| /// Comparison for less than. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if \a x less than \a y |
| /// \retval false else |
| template<typename T,typename U> typename enable<bool,T,U>::type operator<(T x, U y) { return functions::isless(x, y); } |
| |
| /// Comparison for greater than. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if \a x greater than \a y |
| /// \retval false else |
| template<typename T,typename U> typename enable<bool,T,U>::type operator>(T x, U y) { return functions::isgreater(x, y); } |
| |
| /// Comparison for less equal. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if \a x less equal \a y |
| /// \retval false else |
| template<typename T,typename U> typename enable<bool,T,U>::type operator<=(T x, U y) { return functions::islessequal(x, y); } |
| |
| /// Comparison for greater equal. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if \a x greater equal \a y |
| /// \retval false else |
| template<typename T,typename U> typename enable<bool,T,U>::type operator>=(T x, U y) { return functions::isgreaterequal(x, y); } |
| |
| /// \} |
| /// \name Arithmetic operators |
| /// \{ |
| |
| /// Add halfs. |
| /// \param x left operand |
| /// \param y right operand |
| /// \return sum of half expressions |
| template<typename T,typename U> typename enable<expr,T,U>::type operator+(T x, U y) { return functions::plus(x, y); } |
| |
| /// Subtract halfs. |
| /// \param x left operand |
| /// \param y right operand |
| /// \return difference of half expressions |
| template<typename T,typename U> typename enable<expr,T,U>::type operator-(T x, U y) { return functions::minus(x, y); } |
| |
| /// Multiply halfs. |
| /// \param x left operand |
| /// \param y right operand |
| /// \return product of half expressions |
| template<typename T,typename U> typename enable<expr,T,U>::type operator*(T x, U y) { return functions::multiplies(x, y); } |
| |
| /// Divide halfs. |
| /// \param x left operand |
| /// \param y right operand |
| /// \return quotient of half expressions |
| template<typename T,typename U> typename enable<expr,T,U>::type operator/(T x, U y) { return functions::divides(x, y); } |
| |
| /// Identity. |
| /// \param arg operand |
| /// \return uncahnged operand |
| template<typename T> HALF_CONSTEXPR typename enable<T,T>::type operator+(T arg) { return arg; } |
| |
| /// Negation. |
| /// \param arg operand |
| /// \return negated operand |
| template<typename T> HALF_CONSTEXPR typename enable<T,T>::type operator-(T arg) { return unary_specialized<T>::negate(arg); } |
| |
| /// \} |
| /// \name Input and output |
| /// \{ |
| |
| /// Output operator. |
| /// \param out output stream to write into |
| /// \param arg half expression to write |
| /// \return reference to output stream |
| template<typename T,typename charT,typename traits> typename enable<std::basic_ostream<charT,traits>&,T>::type |
| operator<<(std::basic_ostream<charT,traits> &out, T arg) { return functions::write(out, arg); } |
| |
| /// Input operator. |
| /// \param in input stream to read from |
| /// \param arg half to read into |
| /// \return reference to input stream |
| template<typename charT,typename traits> std::basic_istream<charT,traits>& |
| operator>>(std::basic_istream<charT,traits> &in, half &arg) { return functions::read(in, arg); } |
| |
| /// \} |
| /// \name Basic mathematical operations |
| /// \{ |
| |
| /// Absolute value. |
| /// \param arg operand |
| /// \return absolute value of \a arg |
| // template<typename T> typename enable<T,T>::type abs(T arg) { return unary_specialized<T>::fabs(arg); } |
| inline half abs(half arg) { return unary_specialized<half>::fabs(arg); } |
| inline expr abs(expr arg) { return unary_specialized<expr>::fabs(arg); } |
| |
| /// Absolute value. |
| /// \param arg operand |
| /// \return absolute value of \a arg |
| // template<typename T> typename enable<T,T>::type fabs(T arg) { return unary_specialized<T>::fabs(arg); } |
| inline half fabs(half arg) { return unary_specialized<half>::fabs(arg); } |
| inline expr fabs(expr arg) { return unary_specialized<expr>::fabs(arg); } |
| |
| /// Remainder of division. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return remainder of floating point division. |
| // template<typename T,typename U> typename enable<expr,T,U>::type fmod(T x, U y) { return functions::fmod(x, y); } |
| inline expr fmod(half x, half y) { return functions::fmod(x, y); } |
| inline expr fmod(half x, expr y) { return functions::fmod(x, y); } |
| inline expr fmod(expr x, half y) { return functions::fmod(x, y); } |
| inline expr fmod(expr x, expr y) { return functions::fmod(x, y); } |
| |
| /// Remainder of division. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return remainder of floating point division. |
| // template<typename T,typename U> typename |
| // enable<expr,T,U>::type remainder(T x, U y) { return |
| // functions::remainder(x, y); } |
| inline expr remainder(half x, half y) { |
| return functions::remainder(x, y); |
| } |
| inline expr remainder(half x, expr y) { |
| return functions::remainder(x, y); |
| } |
| inline expr remainder(expr x, half y) { |
| return functions::remainder(x, y); |
| } |
| inline expr remainder(expr x, expr y) { |
| return functions::remainder(x, y); |
| } |
| |
| /// Remainder of division. |
| /// \param x first operand |
| /// \param y second operand |
| /// \param quo address to store some bits of quotient at |
| /// \return remainder of floating point division. |
| // template<typename T,typename U> typename |
| // enable<expr,T,U>::type remquo(T x, U y, int *quo) { return |
| // functions::remquo(x, y, quo); } |
| inline expr remquo(half x, half y, int *quo) { |
| return functions::remquo(x, y, quo); |
| } |
| inline expr remquo(half x, expr y, int *quo) { |
| return functions::remquo(x, y, quo); |
| } |
| inline expr remquo(expr x, half y, int *quo) { |
| return functions::remquo(x, y, quo); |
| } |
| inline expr remquo(expr x, expr y, int *quo) { |
| return functions::remquo(x, y, quo); |
| } |
| |
| /// Fused multiply add. |
| /// \param x first operand |
| /// \param y second operand |
| /// \param z third operand |
| /// \return ( \a x * \a y ) + \a z rounded as one operation. |
| // template<typename T,typename U,typename V> |
| //typename enable<expr,T,U,V>::type fma(T x, U y, V z) { return |
| //functions::fma(x, y, z); } |
| inline expr fma(half x, half y, half z) { return functions::fma(x, y, z); } |
| inline expr fma(half x, half y, expr z) { return functions::fma(x, y, z); } |
| inline expr fma(half x, expr y, half z) { return functions::fma(x, y, z); } |
| inline expr fma(half x, expr y, expr z) { return functions::fma(x, y, z); } |
| inline expr fma(expr x, half y, half z) { return functions::fma(x, y, z); } |
| inline expr fma(expr x, half y, expr z) { return functions::fma(x, y, z); } |
| inline expr fma(expr x, expr y, half z) { return functions::fma(x, y, z); } |
| inline expr fma(expr x, expr y, expr z) { return functions::fma(x, y, z); } |
| |
| /// Maximum of half expressions. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return maximum of operands |
| // template<typename T,typename U> typename result<T,U>::type fmax(T x, U y) { return binary_specialized<T,U>::fmax(x, y); } |
| inline half fmax(half x, half y) { return binary_specialized<half,half>::fmax(x, y); } |
| inline expr fmax(half x, expr y) { return binary_specialized<half,expr>::fmax(x, y); } |
| inline expr fmax(expr x, half y) { return binary_specialized<expr,half>::fmax(x, y); } |
| inline expr fmax(expr x, expr y) { return binary_specialized<expr,expr>::fmax(x, y); } |
| |
| /// Minimum of half expressions. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return minimum of operands |
| // template<typename T,typename U> typename result<T,U>::type fmin(T x, U y) { return binary_specialized<T,U>::fmin(x, y); } |
| inline half fmin(half x, half y) { return binary_specialized<half,half>::fmin(x, y); } |
| inline expr fmin(half x, expr y) { return binary_specialized<half,expr>::fmin(x, y); } |
| inline expr fmin(expr x, half y) { return binary_specialized<expr,half>::fmin(x, y); } |
| inline expr fmin(expr x, expr y) { return binary_specialized<expr,expr>::fmin(x, y); } |
| |
| /// Positive difference. |
| /// \param x first operand |
| /// \param y second operand |
| /// \return \a x - \a y or 0 if difference negative |
| // template<typename T,typename U> typename enable<expr,T,U>::type fdim(T x, U y) { return functions::fdim(x, y); } |
| inline expr fdim(half x, half y) { return functions::fdim(x, y); } |
| inline expr fdim(half x, expr y) { return functions::fdim(x, y); } |
| inline expr fdim(expr x, half y) { return functions::fdim(x, y); } |
| inline expr fdim(expr x, expr y) { return functions::fdim(x, y); } |
| |
| /// Get NaN value. |
| /// \return quiet NaN |
| inline half nanh(const char *) { return functions::nanh(); } |
| |
| /// \} |
| /// \name Exponential functions |
| /// \{ |
| |
| /// Exponential function. |
| /// \param arg function argument |
| /// \return e raised to \a arg |
| // template<typename T> typename enable<expr,T>::type exp(T arg) { return functions::exp(arg); } |
| inline expr exp(half arg) { return functions::exp(arg); } |
| inline expr exp(expr arg) { return functions::exp(arg); } |
| |
| /// Exponential minus one. |
| /// \param arg function argument |
| /// \return e raised to \a arg subtracted by 1 |
| // template<typename T> typename enable<expr,T>::type expm1(T arg) { return functions::expm1(arg); } |
| inline expr expm1(half arg) { return functions::expm1(arg); } |
| inline expr expm1(expr arg) { return functions::expm1(arg); } |
| |
| /// Binary exponential. |
| /// \param arg function argument |
| /// \return 2 raised to \a arg |
| // template<typename T> typename enable<expr,T>::type exp2(T arg) { return functions::exp2(arg); } |
| inline expr exp2(half arg) { return functions::exp2(arg); } |
| inline expr exp2(expr arg) { return functions::exp2(arg); } |
| |
| /// Natural logorithm. |
| /// \param arg function argument |
| /// \return logarithm of \a arg to base e |
| // template<typename T> typename enable<expr,T>::type log(T arg) { return functions::log(arg); } |
| inline expr log(half arg) { return functions::log(arg); } |
| inline expr log(expr arg) { return functions::log(arg); } |
| |
| /// Common logorithm. |
| /// \param arg function argument |
| /// \return logarithm of \a arg to base 10 |
| // template<typename T> typename enable<expr,T>::type log10(T arg) { return functions::log10(arg); } |
| inline expr log10(half arg) { return functions::log10(arg); } |
| inline expr log10(expr arg) { return functions::log10(arg); } |
| |
| /// Natural logorithm. |
| /// \param arg function argument |
| /// \return logarithm of \a arg plus 1 to base e |
| // template<typename T> typename enable<expr,T>::type log1p(T arg) { return functions::log1p(arg); } |
| inline expr log1p(half arg) { return functions::log1p(arg); } |
| inline expr log1p(expr arg) { return functions::log1p(arg); } |
| |
| /// Binary logorithm. |
| /// \param arg function argument |
| /// \return logarithm of \a arg to base 2 |
| // template<typename T> typename enable<expr,T>::type log2(T arg) { return functions::log2(arg); } |
| inline expr log2(half arg) { return functions::log2(arg); } |
| inline expr log2(expr arg) { return functions::log2(arg); } |
| |
| /// \} |
| /// \name Power functions |
| /// \{ |
| |
| /// Square root. |
| /// \param arg function argument |
| /// \return square root of \a arg |
| // template<typename T> typename enable<expr,T>::type sqrt(T arg) { return functions::sqrt(arg); } |
| inline expr sqrt(half arg) { return functions::sqrt(arg); } |
| inline expr sqrt(expr arg) { return functions::sqrt(arg); } |
| |
| /// Cubic root. |
| /// \param arg function argument |
| /// \return cubic root of \a arg |
| // template<typename T> typename |
| //enable<expr,T>::type cbrt(T arg) { return |
| // functions::cbrt(arg); } |
| inline expr cbrt(half arg) { return functions::cbrt(arg); } |
| inline expr cbrt(expr arg) { return functions::cbrt(arg); } |
| |
| /// Hypotenuse function. |
| /// \param x first argument |
| /// \param y second argument |
| /// \return square root of sum of squares without internal over- |
| /// or underflows |
| // template<typename T,typename U> typename |
| //enable<expr,T,U>::type hypot(T x, U y) { return |
| //functions::hypot(x, y); } |
| inline expr hypot(half x, half y) { return functions::hypot(x, y); } |
| inline expr hypot(half x, expr y) { return functions::hypot(x, y); } |
| inline expr hypot(expr x, half y) { return functions::hypot(x, y); } |
| inline expr hypot(expr x, expr y) { return functions::hypot(x, y); } |
| |
| /// Power function. |
| /// \param base first argument |
| /// \param exp second argument |
| /// \return \a base raised to \a exp |
| // template<typename T,typename U> typename enable<expr,T,U>::type pow(T base, U exp) { return functions::pow(base, exp); } |
| inline expr pow(half base, half exp) { return functions::pow(base, exp); } |
| inline expr pow(half base, expr exp) { return functions::pow(base, exp); } |
| inline expr pow(expr base, half exp) { return functions::pow(base, exp); } |
| inline expr pow(expr base, expr exp) { return functions::pow(base, exp); } |
| |
| /// \} |
| /// \name Trigonometric functions |
| /// \{ |
| |
| /// Sine function. |
| /// \param arg function argument |
| /// \return sine value of \a arg |
| // template<typename T> typename enable<expr,T>::type sin(T arg) { return functions::sin(arg); } |
| inline expr sin(half arg) { return functions::sin(arg); } |
| inline expr sin(expr arg) { return functions::sin(arg); } |
| |
| /// Cosine function. |
| /// \param arg function argument |
| /// \return cosine value of \a arg |
| // template<typename T> typename enable<expr,T>::type cos(T arg) { return functions::cos(arg); } |
| inline expr cos(half arg) { return functions::cos(arg); } |
| inline expr cos(expr arg) { return functions::cos(arg); } |
| |
| /// Tangent function. |
| /// \param arg function argument |
| /// \return tangent value of \a arg |
| // template<typename T> typename enable<expr,T>::type tan(T arg) { return functions::tan(arg); } |
| inline expr tan(half arg) { return functions::tan(arg); } |
| inline expr tan(expr arg) { return functions::tan(arg); } |
| |
| /// Arc sine. |
| /// \param arg function argument |
| /// \return arc sine value of \a arg |
| // template<typename T> typename enable<expr,T>::type asin(T arg) { return functions::asin(arg); } |
| inline expr asin(half arg) { return functions::asin(arg); } |
| inline expr asin(expr arg) { return functions::asin(arg); } |
| |
| /// Arc cosine function. |
| /// \param arg function argument |
| /// \return arc cosine value of \a arg |
| // template<typename T> typename enable<expr,T>::type acos(T arg) { return functions::acos(arg); } |
| inline expr acos(half arg) { return functions::acos(arg); } |
| inline expr acos(expr arg) { return functions::acos(arg); } |
| |
| /// Arc tangent function. |
| /// \param arg function argument |
| /// \return arc tangent value of \a arg |
| // template<typename T> typename enable<expr,T>::type atan(T arg) { return functions::atan(arg); } |
| inline expr atan(half arg) { return functions::atan(arg); } |
| inline expr atan(expr arg) { return functions::atan(arg); } |
| |
| /// Arc tangent function. |
| /// \param x first argument |
| /// \param y second argument |
| /// \return arc tangent value |
| // template<typename T,typename U> typename enable<expr,T,U>::type atan2(T x, U y) { return functions::atan2(x, y); } |
| inline expr atan2(half x, half y) { return functions::atan2(x, y); } |
| inline expr atan2(half x, expr y) { return functions::atan2(x, y); } |
| inline expr atan2(expr x, half y) { return functions::atan2(x, y); } |
| inline expr atan2(expr x, expr y) { return functions::atan2(x, y); } |
| |
| /// \} |
| /// \name Hyperbolic functions |
| /// \{ |
| |
| /// Hyperbolic sine. |
| /// \param arg function argument |
| /// \return hyperbolic sine value of \a arg |
| // template<typename T> typename enable<expr,T>::type sinh(T arg) { return functions::sinh(arg); } |
| inline expr sinh(half arg) { return functions::sinh(arg); } |
| inline expr sinh(expr arg) { return functions::sinh(arg); } |
| |
| /// Hyperbolic cosine. |
| /// \param arg function argument |
| /// \return hyperbolic cosine value of \a arg |
| // template<typename T> typename enable<expr,T>::type cosh(T arg) { return functions::cosh(arg); } |
| inline expr cosh(half arg) { return functions::cosh(arg); } |
| inline expr cosh(expr arg) { return functions::cosh(arg); } |
| |
| /// Hyperbolic tangent. |
| /// \param arg function argument |
| /// \return hyperbolic tangent value of \a arg |
| // template<typename T> typename enable<expr,T>::type tanh(T arg) { return functions::tanh(arg); } |
| inline expr tanh(half arg) { return functions::tanh(arg); } |
| inline expr tanh(expr arg) { return functions::tanh(arg); } |
| |
| /// Hyperbolic area sine. |
| /// \param arg function argument |
| /// \return area sine value of \a arg |
| // template<typename T> typename enable<expr,T>::type asinh(T arg) { return functions::asinh(arg); } |
| inline expr asinh(half arg) { return functions::asinh(arg); } |
| inline expr asinh(expr arg) { return functions::asinh(arg); } |
| |
| /// Hyperbolic area cosine. |
| /// \param arg function argument |
| /// \return area cosine value of \a arg |
| // template<typename T> typename enable<expr,T>::type acosh(T arg) { return functions::acosh(arg); } |
| inline expr acosh(half arg) { return functions::acosh(arg); } |
| inline expr acosh(expr arg) { return functions::acosh(arg); } |
| |
| /// Hyperbolic area tangent. |
| /// \param arg function argument |
| /// \return area tangent value of \a arg |
| // template<typename T> typename enable<expr,T>::type atanh(T arg) { return functions::atanh(arg); } |
| inline expr atanh(half arg) { return functions::atanh(arg); } |
| inline expr atanh(expr arg) { return functions::atanh(arg); } |
| |
| /// \} |
| /// \name Error and gamma functions |
| /// \{ |
| |
| /// Error function. |
| /// \param arg function argument |
| /// \return error function value of \a arg |
| // template<typename T> typename enable<expr,T>::type erf(T arg) { return functions::erf(arg); } |
| inline expr erf(half arg) { return functions::erf(arg); } |
| inline expr erf(expr arg) { return functions::erf(arg); } |
| |
| /// Complementary error function. |
| /// \param arg function argument |
| /// \return 1 minus error function value of \a arg |
| // template<typename T> typename enable<expr,T>::type erfc(T arg) { return functions::erfc(arg); } |
| inline expr erfc(half arg) { return functions::erfc(arg); } |
| inline expr erfc(expr arg) { return functions::erfc(arg); } |
| |
| /// Natural logarithm of gamma function. |
| /// \param arg function argument |
| /// \return natural logarith of gamma function for \a arg |
| // template<typename T> typename enable<expr,T>::type lgamma(T arg) { return functions::lgamma(arg); } |
| inline expr lgamma(half arg) { return functions::lgamma(arg); } |
| inline expr lgamma(expr arg) { return functions::lgamma(arg); } |
| |
| /// Gamma function. |
| /// \param arg function argument |
| /// \return gamma function value of \a arg |
| // template<typename T> typename enable<expr,T>::type tgamma(T arg) { return functions::tgamma(arg); } |
| inline expr tgamma(half arg) { return functions::tgamma(arg); } |
| inline expr tgamma(expr arg) { return functions::tgamma(arg); } |
| |
| /// \} |
| /// \name Rounding |
| /// \{ |
| |
| /// Nearest integer not less than half value. |
| /// \param arg half to round |
| /// \return nearest integer not less than \a arg |
| // template<typename T> typename enable<half,T>::type ceil(T arg) { return functions::ceil(arg); } |
| inline half ceil(half arg) { return functions::ceil(arg); } |
| inline half ceil(expr arg) { return functions::ceil(arg); } |
| |
| /// Nearest integer not greater than half value. |
| /// \param arg half to round |
| /// \return nearest integer not greater than \a arg |
| // template<typename T> typename enable<half,T>::type floor(T arg) { return functions::floor(arg); } |
| inline half floor(half arg) { return functions::floor(arg); } |
| inline half floor(expr arg) { return functions::floor(arg); } |
| |
| /// Nearest integer not greater in magnitude than half value. |
| /// \param arg half to round |
| /// \return nearest integer not greater in magnitude than \a arg |
| // template<typename T> typename enable<half,T>::type trunc(T arg) { return functions::trunc(arg); } |
| inline half trunc(half arg) { return functions::trunc(arg); } |
| inline half trunc(expr arg) { return functions::trunc(arg); } |
| |
| /// Nearest integer. |
| /// \param arg half to round |
| /// \return nearest integer, rounded away from zero in half-way cases |
| // template<typename T> typename enable<half,T>::type round(T arg) { return functions::round(arg); } |
| inline half round(half arg) { return functions::round(arg); } |
| inline half round(expr arg) { return functions::round(arg); } |
| |
| /// Nearest integer. |
| /// \param arg half to round |
| /// \return nearest integer, rounded away from zero in half-way cases |
| // template<typename T> typename enable<long,T>::type lround(T arg) { return functions::lround(arg); } |
| inline long lround(half arg) { return functions::lround(arg); } |
| inline long lround(expr arg) { return functions::lround(arg); } |
| |
| /// Nearest integer using half's internal rounding mode. |
| /// \param arg half expression to round |
| /// \return nearest integer using default rounding mode |
| // template<typename T> typename |
| //enable<half,T>::type nearbyint(T arg) { return |
| // functions::nearbyint(arg); } |
| inline half nearbyint(half arg) { return functions::rint(arg); } |
| inline half nearbyint(expr arg) { return functions::rint(arg); } |
| |
| /// Nearest integer using half's internal rounding mode. |
| /// \param arg half expression to round |
| /// \return nearest integer using default rounding mode |
| // template<typename T> typename |
| //enable<half,T>::type rint(T arg) { return |
| // functions::rint(arg); } |
| inline half rint(half arg) { return functions::rint(arg); } |
| inline half rint(expr arg) { return functions::rint(arg); } |
| |
| /// Nearest integer using half's internal rounding mode. |
| /// \param arg half expression to round |
| /// \return nearest integer using default rounding mode |
| // template<typename T> typename |
| //enable<long,T>::type lrint(T arg) { return |
| // functions::lrint(arg); } |
| inline long lrint(half arg) { return functions::lrint(arg); } |
| inline long lrint(expr arg) { return functions::lrint(arg); } |
| #if HALF_ENABLE_CPP11_LONG_LONG |
| /// Nearest integer. |
| /// \param arg half to round |
| /// \return nearest integer, rounded away from zero in half-way cases |
| // template<typename T> typename enable<long long,T>::type llround(T arg) { return functions::llround(arg); } |
| inline long long llround(half arg) { return functions::llround(arg); } |
| inline long long llround(expr arg) { return functions::llround(arg); } |
| |
| /// Nearest integer using half's internal rounding mode. |
| /// \param arg half expression to round |
| /// \return nearest integer using default rounding mode |
| // template<typename T> typename enable<long |
| // long,T>::type llrint(T arg) { return functions::llrint(arg); |
| // } |
| inline long long llrint(half arg) { |
| return functions::llrint(arg); |
| } |
| inline long long llrint(expr arg) { |
| return functions::llrint(arg); |
| } |
| #endif |
| |
| /// \} |
| /// \name Floating point manipulation |
| /// \{ |
| |
| /// Decompress floating point number. |
| /// \param arg number to decompress |
| /// \param exp address to store exponent at |
| /// \return significant in range [0.5, 1) |
| // template<typename T> typename enable<half,T>::type frexp(T arg, int *exp) { return functions::frexp(arg, exp); } |
| inline half frexp(half arg, int *exp) { return functions::frexp(arg, exp); } |
| inline half frexp(expr arg, int *exp) { return functions::frexp(arg, exp); } |
| |
| /// Multiply by power of two. |
| /// \param arg number to modify |
| /// \param exp power of two to multiply with |
| /// \return \a arg multplied by 2 raised to \a exp |
| // template<typename T> typename enable<half,T>::type ldexp(T arg, int exp) { return functions::scalbln(arg, exp); } |
| inline half ldexp(half arg, int exp) { return functions::scalbln(arg, exp); } |
| inline half ldexp(expr arg, int exp) { return functions::scalbln(arg, exp); } |
| |
| /// Extract integer and fractional parts. |
| /// \param arg number to decompress |
| /// \param iptr address to store integer part at |
| /// \return fractional part |
| // template<typename T> typename enable<half,T>::type modf(T arg, half *iptr) { return functions::modf(arg, iptr); } |
| inline half modf(half arg, half *iptr) { return functions::modf(arg, iptr); } |
| inline half modf(expr arg, half *iptr) { return functions::modf(arg, iptr); } |
| |
| /// Multiply by power of two. |
| /// \param arg number to modify |
| /// \param exp power of two to multiply with |
| /// \return \a arg multplied by 2 raised to \a exp |
| // template<typename T> typename enable<half,T>::type scalbn(T arg, int exp) { return functions::scalbln(arg, exp); } |
| inline half scalbn(half arg, int exp) { return functions::scalbln(arg, exp); } |
| inline half scalbn(expr arg, int exp) { return functions::scalbln(arg, exp); } |
| |
| /// Multiply by power of two. |
| /// \param arg number to modify |
| /// \param exp power of two to multiply with |
| /// \return \a arg multplied by 2 raised to \a exp |
| // template<typename T> typename |
| //enable<half,T>::type scalbln(T arg, long exp) { return |
| // functions::scalbln(arg, exp); } |
| inline half scalbln(half arg, long exp) { |
| return functions::scalbln(arg, exp); |
| } |
| inline half scalbln(expr arg, long exp) { return functions::scalbln(arg, exp); } |
| |
| /// Extract exponent. |
| /// \param arg number to query |
| /// \return floating point exponent |
| /// \retval FP_ILOGB0 for zero |
| /// \retval FP_ILOGBNAN for NaN |
| /// \retval MAX_INT for infinity |
| // template<typename T> typename enable<int,T>::type ilogb(T arg) { return functions::ilogb(arg); } |
| inline int ilogb(half arg) { return functions::ilogb(arg); } |
| inline int ilogb(expr arg) { return functions::ilogb(arg); } |
| |
| /// Extract exponent. |
| /// \param arg number to query |
| /// \return floating point exponent |
| // template<typename T> typename enable<half,T>::type logb(T arg) { return functions::logb(arg); } |
| inline half logb(half arg) { return functions::logb(arg); } |
| inline half logb(expr arg) { return functions::logb(arg); } |
| |
| /// Next representable value. |
| /// \param from value to compute next representable value for |
| /// \param to direction towards which to compute next value |
| /// \return next representable value after \a from in direction towards \a to |
| // template<typename T,typename U> typename enable<half,T,U>::type nextafter(T from, U to) { return functions::nextafter(from, to); } |
| inline half nextafter(half from, half to) { return functions::nextafter(from, to); } |
| inline half nextafter(half from, expr to) { return functions::nextafter(from, to); } |
| inline half nextafter(expr from, half to) { return functions::nextafter(from, to); } |
| inline half nextafter(expr from, expr to) { return functions::nextafter(from, to); } |
| |
| /// Next representable value. |
| /// \param from value to compute next representable value for |
| /// \param to direction towards which to compute next value |
| /// \return next representable value after \a from in direction towards \a to |
| // template<typename T> typename enable<half,T>::type nexttoward(T from, long double to) { return functions::nexttoward(from, to); } |
| inline half nexttoward(half from, long double to) { return functions::nexttoward(from, to); } |
| inline half nexttoward(expr from, long double to) { return functions::nexttoward(from, to); } |
| |
| /// Take sign. |
| /// \param x value to change sign for |
| /// \param y value to take sign from |
| /// \return value equal to \a x in magnitude and to \a y in sign |
| // template<typename T,typename U> typename enable<half,T,U>::type copysign(T x, U y) { return functions::copysign(x, y); } |
| inline half copysign(half x, half y) { return functions::copysign(x, y); } |
| inline half copysign(half x, expr y) { return functions::copysign(x, y); } |
| inline half copysign(expr x, half y) { return functions::copysign(x, y); } |
| inline half copysign(expr x, expr y) { return functions::copysign(x, y); } |
| |
| /// \} |
| /// \name Floating point classification |
| /// \{ |
| |
| /// Classify floating point value. |
| /// \param arg number to classify |
| /// \retval FP_ZERO for positive and negative zero |
| /// \retval FP_SUBNORMAL for subnormal numbers |
| /// \retval FP_INFINITY for positive and negative infinity |
| /// \retval FP_NAN for NaNs |
| /// \retval FP_NORMAL for all other (normal) values |
| // template<typename T> typename |
| //enable<int,T>::type fpclassify(T arg) { return |
| // functions::fpclassify(arg); } |
| inline int fpclassify(half arg) { |
| return functions::fpclassify(arg); |
| } |
| inline int fpclassify(expr arg) { |
| return functions::fpclassify(arg); |
| } |
| |
| /// Check if finite number. |
| /// \param arg number to check |
| /// \retval true if neither infinity nor NaN |
| /// \retval false else |
| // template<typename T> typename |
| //enable<bool,T>::type isfinite(T arg) { return |
| // functions::isfinite(arg); } |
| inline bool isfinite(half arg) { |
| return functions::isfinite(arg); |
| } |
| inline bool isfinite(expr arg) { |
| return functions::isfinite(arg); |
| } |
| |
| /// Check for infinity. |
| /// \param arg number to check |
| /// \retval true for positive or negative infinity |
| /// \retval false else |
| // template<typename T> typename |
| //enable<bool,T>::type isinf(T arg) { return |
| // functions::isinf(arg); } |
| inline bool isinf(half arg) { return functions::isinf(arg); } |
| inline bool isinf(expr arg) { return functions::isinf(arg); } |
| |
| /// Check for NaN. |
| /// \param arg number to check |
| /// \retval true for NaNs |
| /// \retval false else |
| // template<typename T> typename |
| //enable<bool,T>::type isnan(T arg) { return |
| // functions::isnan(arg); } |
| inline bool isnan(half arg) { return functions::isnan(arg); } |
| inline bool isnan(expr arg) { return functions::isnan(arg); } |
| |
| /// Check if normal number. |
| /// \param arg number to check |
| /// \retval true if normal number |
| /// \retval false if either subnormal, zero, infinity or NaN |
| // template<typename T> typename |
| //enable<bool,T>::type isnormal(T arg) { return |
| // functions::isnormal(arg); } |
| inline bool isnormal(half arg) { |
| return functions::isnormal(arg); |
| } |
| inline bool isnormal(expr arg) { |
| return functions::isnormal(arg); |
| } |
| |
| /// Check sign. |
| /// \param arg number to check |
| /// \retval true for negative number |
| /// \retval false for positive number |
| // template<typename T> typename |
| //enable<bool,T>::type signbit(T arg) { return |
| // functions::signbit(arg); } |
| inline bool signbit(half arg) { |
| return functions::signbit(arg); |
| } |
| inline bool signbit(expr arg) { |
| return functions::signbit(arg); |
| } |
| |
| /// \} |
| /// \name Comparison |
| /// \{ |
| |
| /// Comparison for greater than. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if \a x greater than \a y |
| /// \retval false else |
| // template<typename T,typename U> typename |
| // enable<bool,T,U>::type isgreater(T x, U y) { return |
| // functions::isgreater(x, y); } |
| inline bool isgreater(half x, half y) { |
| return functions::isgreater(x, y); |
| } |
| inline bool isgreater(half x, expr y) { |
| return functions::isgreater(x, y); |
| } |
| inline bool isgreater(expr x, half y) { |
| return functions::isgreater(x, y); |
| } |
| inline bool isgreater(expr x, expr y) { |
| return functions::isgreater(x, y); |
| } |
| |
| /// Comparison for greater equal. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if \a x greater equal \a y |
| /// \retval false else |
| // template<typename T,typename U> typename |
| // enable<bool,T,U>::type isgreaterequal(T x, U y) { return |
| // functions::isgreaterequal(x, y); } |
| inline bool isgreaterequal(half x, half y) { |
| return functions::isgreaterequal(x, y); |
| } |
| inline bool isgreaterequal(half x, expr y) { |
| return functions::isgreaterequal(x, y); |
| } |
| inline bool isgreaterequal(expr x, half y) { |
| return functions::isgreaterequal(x, y); |
| } |
| inline bool isgreaterequal(expr x, expr y) { |
| return functions::isgreaterequal(x, y); |
| } |
| |
| /// Comparison for less than. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if \a x less than \a y |
| /// \retval false else |
| // template<typename T,typename U> typename |
| // enable<bool,T,U>::type isless(T x, U y) { return |
| // functions::isless(x, y); } |
| inline bool isless(half x, half y) { |
| return functions::isless(x, y); |
| } |
| inline bool isless(half x, expr y) { |
| return functions::isless(x, y); |
| } |
| inline bool isless(expr x, half y) { |
| return functions::isless(x, y); |
| } |
| inline bool isless(expr x, expr y) { |
| return functions::isless(x, y); |
| } |
| |
| /// Comparison for less equal. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if \a x less equal \a y |
| /// \retval false else |
| // template<typename T,typename U> typename |
| // enable<bool,T,U>::type islessequal(T x, U y) { return |
| // functions::islessequal(x, y); } |
| inline bool islessequal(half x, half y) { |
| return functions::islessequal(x, y); |
| } |
| inline bool islessequal(half x, expr y) { |
| return functions::islessequal(x, y); |
| } |
| inline bool islessequal(expr x, half y) { |
| return functions::islessequal(x, y); |
| } |
| inline bool islessequal(expr x, expr y) { |
| return functions::islessequal(x, y); |
| } |
| |
| /// Comarison for less or greater. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if either less or greater |
| /// \retval false else |
| // template<typename T,typename U> typename |
| // enable<bool,T,U>::type islessgreater(T x, U y) { return |
| // functions::islessgreater(x, y); } |
| inline bool islessgreater(half x, half y) { |
| return functions::islessgreater(x, y); |
| } |
| inline bool islessgreater(half x, expr y) { |
| return functions::islessgreater(x, y); |
| } |
| inline bool islessgreater(expr x, half y) { |
| return functions::islessgreater(x, y); |
| } |
| inline bool islessgreater(expr x, expr y) { |
| return functions::islessgreater(x, y); |
| } |
| |
| /// Check if unordered. |
| /// \param x first operand |
| /// \param y second operand |
| /// \retval true if unordered (one or two NaN operands) |
| /// \retval false else |
| // template<typename T,typename U> typename |
| // enable<bool,T,U>::type isunordered(T x, U y) { return |
| // functions::isunordered(x, y); } |
| inline bool isunordered(half x, half y) { |
| return functions::isunordered(x, y); |
| } |
| inline bool isunordered(half x, expr y) { |
| return functions::isunordered(x, y); |
| } |
| inline bool isunordered(expr x, half y) { |
| return functions::isunordered(x, y); |
| } |
| inline bool isunordered(expr x, expr y) { |
| return functions::isunordered(x, y); |
| } |
| |
| /// \name Casting |
| /// \{ |
| |
| /// Cast to or from half-precision floating point number. |
| /// This casts between [half](\ref half_float::half) and any |
| /// built-in arithmetic type. The values are converted directly |
| /// using the given rounding mode, without any roundtrip over |
| /// `float` that a `static_cast` would otherwise do. It uses the |
| /// default rounding mode. |
| /// |
| /// Using this cast with neither of the two types being a |
| /// [half](\ref half_float::half) or with any of the two types |
| /// not being a built-in arithmetic type (apart from [half](\ref |
| /// half_float::half), of course) results in a compiler error |
| /// and casting between [half](\ref half_float::half)s is just a |
| /// no-op. \tparam T destination type (half or built-in |
| /// arithmetic type) \tparam U source type (half or built-in |
| /// arithmetic type) \param arg value to cast \return \a arg |
| /// converted to destination type |
| template <typename T, typename U> |
| T half_cast(U arg) { |
| return half_caster<T, U>::cast(arg); |
| } |
| |
| /// Cast to or from half-precision floating point number. |
| /// This casts between [half](\ref half_float::half) and any |
| /// built-in arithmetic type. The values are converted directly |
| /// using the given rounding mode, without any roundtrip over |
| /// `float` that a `static_cast` would otherwise do. |
| /// |
| /// Using this cast with neither of the two types being a |
| /// [half](\ref half_float::half) or with any of the two types |
| /// not being a built-in arithmetic type (apart from [half](\ref |
| /// half_float::half), of course) results in a compiler error |
| /// and casting between [half](\ref half_float::half)s is just a |
| /// no-op. \tparam T destination type (half or built-in |
| /// arithmetic type) \tparam R rounding mode to use. \tparam U |
| /// source type (half or built-in arithmetic type) \param arg |
| /// value to cast \return \a arg converted to destination type |
| template <typename T, std::float_round_style R, typename U> |
| T half_cast(U arg) { |
| return half_caster<T, U, R>::cast(arg); |
| } |
| /// \} |
| } |
| |
| using detail::operator==; |
| using detail::operator!=; |
| using detail::operator<; |
| using detail::operator>; |
| using detail::operator<=; |
| using detail::operator>=; |
| using detail::operator+; |
| using detail::operator-; |
| using detail::operator*; |
| using detail::operator/; |
| using detail::operator<<; |
| using detail::operator>>; |
| |
| using detail::abs; |
| using detail::acos; |
| using detail::acosh; |
| using detail::asin; |
| using detail::asinh; |
| using detail::atan; |
| using detail::atan2; |
| using detail::atanh; |
| using detail::cbrt; |
| using detail::ceil; |
| using detail::cos; |
| using detail::cosh; |
| using detail::erf; |
| using detail::erfc; |
| using detail::exp; |
| using detail::exp2; |
| using detail::expm1; |
| using detail::fabs; |
| using detail::fdim; |
| using detail::floor; |
| using detail::fma; |
| using detail::fmax; |
| using detail::fmin; |
| using detail::fmod; |
| using detail::hypot; |
| using detail::lgamma; |
| using detail::log; |
| using detail::log10; |
| using detail::log1p; |
| using detail::log2; |
| using detail::lrint; |
| using detail::lround; |
| using detail::nanh; |
| using detail::nearbyint; |
| using detail::pow; |
| using detail::remainder; |
| using detail::remquo; |
| using detail::rint; |
| using detail::round; |
| using detail::sin; |
| using detail::sinh; |
| using detail::sqrt; |
| using detail::tan; |
| using detail::tanh; |
| using detail::tgamma; |
| using detail::trunc; |
| #if HALF_ENABLE_CPP11_LONG_LONG |
| using detail::llrint; |
| using detail::llround; |
| #endif |
| using detail::frexp; |
| using detail::ldexp; |
| using detail::modf; |
| using detail::scalbn; |
| using detail::scalbln; |
| using detail::ilogb; |
| using detail::logb; |
| using detail::nextafter; |
| using detail::nexttoward; |
| using detail::copysign; |
| using detail::fpclassify; |
| using detail::isfinite; |
| using detail::isinf; |
| using detail::isnan; |
| using detail::isnormal; |
| using detail::signbit; |
| using detail::isgreater; |
| using detail::isgreaterequal; |
| using detail::isless; |
| using detail::islessequal; |
| using detail::islessgreater; |
| using detail::isunordered; |
| |
| using detail::half_cast; |
| } |
| |
| |
| /// Extensions to the C++ standard library. |
| namespace std |
| { |
| /// Numeric limits for half-precision floats. |
| /// Because of the underlying single-precision implementation of many |
| /// operations, it inherits some properties from `std::numeric_limits<float>`. |
| template <> |
| class numeric_limits<half_float::half> : public numeric_limits<float> { |
| public: |
| /// Supports signed values. |
| static HALF_CONSTEXPR_CONST bool is_signed = true; |
| |
| /// Is not exact. |
| static HALF_CONSTEXPR_CONST bool is_exact = false; |
| |
| /// Doesn't provide modulo arithmetic. |
| static HALF_CONSTEXPR_CONST bool is_modulo = false; |
| |
| /// IEEE conformant. |
| static HALF_CONSTEXPR_CONST bool is_iec559 = true; |
| |
| /// Supports infinity. |
| static HALF_CONSTEXPR_CONST bool has_infinity = true; |
| |
| /// Supports quiet NaNs. |
| static HALF_CONSTEXPR_CONST bool has_quiet_NaN = true; |
| |
| /// Supports subnormal values. |
| static HALF_CONSTEXPR_CONST float_denorm_style has_denorm = denorm_present; |
| |
| /// Rounding mode. |
| /// Due to the mix of internal single-precision computations (using the |
| /// rounding mode of the underlying single-precision implementation) with the |
| /// rounding mode of the single-to-half conversions, the actual rounding mode |
| /// might be `std::round_indeterminate` if the default half-precision rounding |
| /// mode doesn't match the single-precision rounding mode. |
| static HALF_CONSTEXPR_CONST float_round_style round_style = |
| (std::numeric_limits<float>::round_style == half_float::half::round_style) |
| ? half_float::half::round_style |
| : round_indeterminate; |
| |
| /// Significant digits. |
| static HALF_CONSTEXPR_CONST int digits = 11; |
| |
| /// Significant decimal digits. |
| static HALF_CONSTEXPR_CONST int digits10 = 3; |
| |
| /// Required decimal digits to represent all possible values. |
| static HALF_CONSTEXPR_CONST int max_digits10 = 5; |
| |
| /// Number base. |
| static HALF_CONSTEXPR_CONST int radix = 2; |
| |
| /// One more than smallest exponent. |
| static HALF_CONSTEXPR_CONST int min_exponent = -13; |
| |
| /// Smallest normalized representable power of 10. |
| static HALF_CONSTEXPR_CONST int min_exponent10 = -4; |
| |
| /// One more than largest exponent |
| static HALF_CONSTEXPR_CONST int max_exponent = 16; |
| |
| /// Largest finitely representable power of 10. |
| static HALF_CONSTEXPR_CONST int max_exponent10 = 4; |
| |
| /// Smallest positive normal value. |
| static HALF_CONSTEXPR half_float::half min() HALF_NOTHROW { |
| return half_float::half(half_float::detail::binary, 0x0400); |
| } |
| |
| /// Smallest finite value. |
| static HALF_CONSTEXPR half_float::half lowest() HALF_NOTHROW { |
| return half_float::half(half_float::detail::binary, 0xFBFF); |
| } |
| |
| /// Largest finite value. |
| static HALF_CONSTEXPR half_float::half max() HALF_NOTHROW { |
| return half_float::half(half_float::detail::binary, 0x7BFF); |
| } |
| |
| /// Difference between one and next representable value. |
| static HALF_CONSTEXPR half_float::half epsilon() HALF_NOTHROW { |
| return half_float::half(half_float::detail::binary, 0x1400); |
| } |
| |
| /// Maximum rounding error. |
| static HALF_CONSTEXPR half_float::half round_error() HALF_NOTHROW { |
| return half_float::half( |
| half_float::detail::binary, |
| (round_style == std::round_to_nearest) ? 0x3800 : 0x3C00); |
| } |
| |
| /// Positive infinity. |
| static HALF_CONSTEXPR half_float::half infinity() HALF_NOTHROW { |
| return half_float::half(half_float::detail::binary, 0x7C00); |
| } |
| |
| /// Quiet NaN. |
| static HALF_CONSTEXPR half_float::half quiet_NaN() HALF_NOTHROW { |
| return half_float::half(half_float::detail::binary, 0x7FFF); |
| } |
| |
| /// Signalling NaN. |
| static HALF_CONSTEXPR half_float::half signaling_NaN() HALF_NOTHROW { |
| return half_float::half(half_float::detail::binary, 0x7DFF); |
| } |
| |
| /// Smallest positive subnormal value. |
| static HALF_CONSTEXPR half_float::half denorm_min() HALF_NOTHROW { |
| return half_float::half(half_float::detail::binary, 0x0001); |
| } |
| }; |
| |
| #if HALF_ENABLE_CPP11_HASH |
| /// Hash function for half-precision floats. |
| /// This is only defined if C++11 `std::hash` is supported and enabled. |
| template<> struct hash<half_float::half> //: unary_function<half_float::half,size_t> |
| { |
| /// Type of function argument. |
| typedef half_float::half argument_type; |
| |
| /// Function return type. |
| typedef size_t result_type; |
| |
| /// Compute hash function. |
| /// \param arg half to hash |
| /// \return hash value |
| result_type operator()(argument_type arg) const { |
| return hash<half_float::detail::uint16>()( |
| static_cast<unsigned>(arg.data_) & |
| -(arg.data_ != 0x8000)); |
| } |
| }; |
| #endif |
| } |
| |
| |
| #undef HALF_CONSTEXPR |
| #undef HALF_CONSTEXPR_CONST |
| #undef HALF_NOEXCEPT |
| #undef HALF_NOTHROW |
| #ifdef HALF_POP_WARNINGS |
| #pragma warning(pop) |
| #undef HALF_POP_WARNINGS |
| #endif |
| |
| #endif |