blob: 3f64f1f3c87035b8d36f4e5499837c0baa70e0ba [file] [log] [blame]
# Lint as: python3
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test matrix ops via einsum"""
from pyiree.tf.support import tf_test_utils
from pyiree.tf.support import tf_utils
import tensorflow.compat.v2 as tf
VECTOR_DIM = 16
class EinsumVectorModule(tf.Module):
@tf.function(input_signature=[
tf.TensorSpec([VECTOR_DIM], tf.float32),
])
def einsum_identity(self, x):
return tf.einsum('i', x)
@tf.function(input_signature=[
tf.TensorSpec([VECTOR_DIM], tf.float32),
])
def einsum_sum(self, x):
return tf.einsum('i ->', x)
@tf.function(input_signature=[
tf.TensorSpec([VECTOR_DIM], tf.float32),
tf.TensorSpec([VECTOR_DIM], tf.float32),
])
def einsum_mul(self, lhs, rhs):
return tf.einsum('i, i -> i', lhs, rhs)
@tf.function(input_signature=[
tf.TensorSpec([VECTOR_DIM], tf.float32),
tf.TensorSpec([VECTOR_DIM], tf.float32),
])
def einsum_implicit_inner_product(self, lhs, rhs):
return tf.einsum('i, i', lhs, rhs)
@tf.function(input_signature=[
tf.TensorSpec([VECTOR_DIM], tf.float32),
tf.TensorSpec([VECTOR_DIM], tf.float32),
])
def einsum_explicit_inner_product(self, lhs, rhs):
return tf.einsum('i, i ->', lhs, rhs)
@tf.function(input_signature=[
tf.TensorSpec([VECTOR_DIM], tf.float32),
tf.TensorSpec([VECTOR_DIM], tf.float32),
])
def einsum_outer_product(self, lhs, rhs):
return tf.einsum('i, j -> ij', lhs, rhs)
class EinsumVectorTest(tf_test_utils.TracedModuleTestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._modules = tf_test_utils.compile_tf_module(EinsumVectorModule)
# yapf: disable
def test_einsum_identity(self):
def einsum_identity(module):
module.einsum_identity(tf_utils.ndarange([VECTOR_DIM]))
self.compare_backends(einsum_identity, self._modules)
def test_einsum_sum(self):
def einsum_sum(module):
module.einsum_sum(tf_utils.ndarange([VECTOR_DIM]))
self.compare_backends(einsum_sum, self._modules)
def test_einsum_mul(self):
def einsum_mul(module):
module.einsum_mul(tf_utils.ndarange([VECTOR_DIM]),
tf_utils.ndarange([VECTOR_DIM]))
self.compare_backends(einsum_mul, self._modules)
def test_einsum_implicit_inner_product(self):
def einsum_implicit_inner_product(module):
module.einsum_implicit_inner_product(tf_utils.ndarange([VECTOR_DIM]),
tf_utils.ndarange([VECTOR_DIM]))
self.compare_backends(einsum_implicit_inner_product, self._modules)
def test_einsum_explicit_inner_product(self):
def einsum_explicit_inner_product(module):
module.einsum_explicit_inner_product(tf_utils.ndarange([VECTOR_DIM]),
tf_utils.ndarange([VECTOR_DIM]))
self.compare_backends(einsum_explicit_inner_product, self._modules)
def test_einsum_outer_product(self):
def einsum_outer_product(module):
module.einsum_outer_product(tf_utils.ndarange([VECTOR_DIM]),
tf_utils.ndarange([VECTOR_DIM]))
self.compare_backends(einsum_outer_product, self._modules)
# yapf: enable
if __name__ == "__main__":
if hasattr(tf, "enable_v2_behavior"):
tf.enable_v2_behavior()
tf.test.main()