| # Lint as: python3 |
| # Copyright 2020 Google LLC |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # https://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| """Test all applications models in Keras.""" |
| |
| import os |
| |
| from absl import app |
| from absl import flags |
| import numpy as np |
| from pyiree.tf.support import tf_test_utils |
| from pyiree.tf.support import tf_utils |
| import tensorflow.compat.v2 as tf |
| |
| FLAGS = flags.FLAGS |
| |
| # Testing all applications models automatically can take time |
| # so we test it one by one, with argument --model=MobileNet |
| flags.DEFINE_string('model', 'ResNet50', 'model name') |
| flags.DEFINE_string( |
| 'url', '', 'url with model weights ' |
| 'for example https://storage.googleapis.com/iree_models/') |
| flags.DEFINE_bool('use_external_weights', False, |
| 'Whether or not to load external weights from the web') |
| flags.DEFINE_enum('data', 'cifar10', ['cifar10', 'imagenet'], |
| 'data sets on which model was trained: imagenet, cifar10') |
| flags.DEFINE_bool( |
| 'include_top', True, |
| 'Whether or not to include the final (top) layers of the model.') |
| |
| APP_MODELS = { |
| 'ResNet50': |
| tf.keras.applications.resnet.ResNet50, |
| 'ResNet101': |
| tf.keras.applications.resnet.ResNet101, |
| 'ResNet152': |
| tf.keras.applications.resnet.ResNet152, |
| 'ResNet50V2': |
| tf.keras.applications.resnet_v2.ResNet50V2, |
| 'ResNet101V2': |
| tf.keras.applications.resnet_v2.ResNet101V2, |
| 'ResNet152V2': |
| tf.keras.applications.resnet_v2.ResNet152V2, |
| 'VGG16': |
| tf.keras.applications.vgg16.VGG16, |
| 'VGG19': |
| tf.keras.applications.vgg19.VGG19, |
| 'Xception': |
| tf.keras.applications.xception.Xception, |
| 'InceptionV3': |
| tf.keras.applications.inception_v3.InceptionV3, |
| 'InceptionResNetV2': |
| tf.keras.applications.inception_resnet_v2.InceptionResNetV2, |
| 'MobileNet': |
| tf.keras.applications.mobilenet.MobileNet, |
| 'MobileNetV2': |
| tf.keras.applications.mobilenet_v2.MobileNetV2, |
| 'DenseNet121': |
| tf.keras.applications.densenet.DenseNet121, |
| 'DenseNet169': |
| tf.keras.applications.densenet.DenseNet169, |
| 'DenseNet201': |
| tf.keras.applications.densenet.DenseNet201, |
| 'NASNetMobile': |
| tf.keras.applications.nasnet.NASNetMobile, |
| 'NASNetLarge': |
| tf.keras.applications.nasnet.NASNetLarge, |
| } |
| |
| |
| def get_input_shape(): |
| if FLAGS.data == 'imagenet': |
| if FLAGS.model in ['InceptionV3', 'Xception', 'InceptionResNetV2']: |
| return (1, 299, 299, 3) |
| elif FLAGS.model == 'NASNetLarge': |
| return (1, 331, 331, 3) |
| else: |
| return (1, 224, 224, 3) |
| elif FLAGS.data == 'cifar10': |
| return (1, 32, 32, 3) |
| else: |
| raise ValueError(f'Data not supported: {FLAGS.data}') |
| |
| |
| def load_cifar10_weights(model): |
| file_name = 'cifar10' + FLAGS.model |
| # get_file will download the model weights from a publicly available folder, |
| # save them to cache_dir=~/.keras/models/ and return a path to them. |
| url = os.path.join( |
| FLAGS.url, f'cifar10_include_top_{FLAGS.include_top:d}_{FLAGS.model}.h5') |
| weights_path = tf.keras.utils.get_file(file_name, url) |
| model.load_weights(weights_path) |
| return model |
| |
| |
| def initialize_model(): |
| tf_utils.set_random_seed() |
| |
| # Keras applications models receive input shapes without a batch dimension, as |
| # the batch size is dynamic by default. This selects just the image size. |
| input_shape = get_input_shape()[1:] |
| |
| # If weights == 'imagenet', the model will load the appropriate weights from |
| # an external tf.keras URL. |
| weights = None |
| if FLAGS.use_external_weights and FLAGS.data == 'imagenet': |
| weights = 'imagenet' |
| |
| model = APP_MODELS[FLAGS.model](weights=weights, |
| include_top=FLAGS.include_top, |
| input_shape=input_shape) |
| |
| if FLAGS.use_external_weights and FLAGS.data == 'cifar10': |
| if not FLAGS.url: |
| raise ValueError( |
| 'cifar10 weights cannot be loaded without the `--url` flag.') |
| model = load_cifar10_weights(model) |
| return model |
| |
| |
| class VisionModule(tf.Module): |
| |
| def __init__(self): |
| super().__init__() |
| self.m = initialize_model() |
| self.m.predict = lambda x: self.m.call(x, training=False) |
| # Specify input shape with a static batch size. |
| # TODO(b/142948097): Add support for dynamic shapes in SPIR-V lowering. |
| # Replace input_shape with m.input_shape to make the batch size dynamic. |
| self.predict = tf.function( |
| input_signature=[tf.TensorSpec(get_input_shape())])(self.m.predict) |
| |
| |
| class AppTest(tf_test_utils.TracedModuleTestCase): |
| |
| def __init__(self, *args, **kwargs): |
| super().__init__(*args, **kwargs) |
| self._modules = tf_test_utils.compile_tf_module(VisionModule, |
| exported_names=['predict']) |
| |
| def test_predict(self): |
| |
| def predict(module): |
| module.predict(tf_utils.uniform(get_input_shape()), atol=1e-5, rtol=1e-5) |
| |
| self.compare_backends(predict, self._modules) |
| |
| |
| def main(argv): |
| del argv # Unused |
| if hasattr(tf, 'enable_v2_behavior'): |
| tf.enable_v2_behavior() |
| |
| if FLAGS.model not in APP_MODELS: |
| raise ValueError(f'Unsupported model: {FLAGS.model}') |
| # Override VisionModule's __name__ to be more specific. |
| VisionModule.__name__ = os.path.join(FLAGS.model, FLAGS.data) |
| |
| tf.test.main() |
| |
| |
| if __name__ == '__main__': |
| app.run(main) |