| # Copyright 2020 Google LLC |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # https://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| """Tests for ops in the tf.math module that specifically handle logical ops.""" |
| |
| import numpy as np |
| from pyiree.tf.support import tf_test_utils |
| import tensorflow.compat.v2 as tf |
| |
| |
| class LogicalOpsModule(tf.Module): |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([4], tf.bool), |
| tf.TensorSpec([4], tf.bool) |
| ]) |
| def logical_and(self, x, y): |
| return tf.math.logical_and(x, y) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([4], tf.bool), |
| tf.TensorSpec([4], tf.bool) |
| ]) |
| def logical_or(self, x, y): |
| return tf.math.logical_or(x, y) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([4], tf.bool), |
| tf.TensorSpec([4], tf.bool) |
| ]) |
| def logical_xor(self, x, y): |
| return tf.math.logical_xor(x, y) |
| |
| @tf.function(input_signature=[tf.TensorSpec([4], tf.bool)]) |
| def logical_not(self, x): |
| return tf.math.logical_not(x) |
| |
| |
| @tf_test_utils.compile_module(LogicalOpsModule) |
| class LogicalOpsTest(tf_test_utils.TracedModuleTestCase): |
| |
| def test_logical_and(self): |
| |
| def logical_and(module): |
| module.logical_and( |
| np.array([1, 1, 0, 0], dtype=np.bool), |
| np.array([0, 1, 1, 0], dtype=np.bool)) |
| |
| self.compare_backends(logical_and) |
| |
| def test_logical_or(self): |
| |
| def logical_or(module): |
| module.logical_or( |
| np.array([1, 1, 0, 0], dtype=np.bool), |
| np.array([0, 1, 1, 0], dtype=np.bool)) |
| |
| self.compare_backends(logical_or) |
| |
| def test_logical_xor(self): |
| |
| def logical_xor(module): |
| module.logical_xor( |
| np.array([1, 1, 0, 0], dtype=np.bool), |
| np.array([0, 1, 1, 0], dtype=np.bool)) |
| |
| self.compare_backends(logical_xor) |
| |
| def test_logical_not(self): |
| |
| def logical_not(module): |
| module.logical_not(np.array([0, 1, 1, 0], dtype=np.bool)) |
| |
| self.compare_backends(logical_not) |
| |
| |
| if __name__ == "__main__": |
| if hasattr(tf, "enable_v2_behavior"): |
| tf.enable_v2_behavior() |
| tf.test.main() |