blob: 734e3380d93988ef6e19d9780c736c2676e680f2 [file] [log] [blame]
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "mnist_tensorflow.ipynb",
"provenance": [],
"collapsed_sections": [
"PZtRtMMUZHJS"
]
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "PZtRtMMUZHJS",
"colab_type": "text"
},
"source": [
"##### Copyright 2020 Google LLC.\n",
"\n",
"Licensed under the Apache License, Version 2.0 (the \"License\");"
]
},
{
"cell_type": "code",
"metadata": {
"id": "TouZL3JZZSQe",
"colab_type": "code",
"cellView": "both",
"colab": {}
},
"source": [
"#@title License header\n",
"# Copyright 2020 Google LLC\n",
"#\n",
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"# you may not use this file except in compliance with the License.\n",
"# You may obtain a copy of the License at\n",
"#\n",
"# https://www.apache.org/licenses/LICENSE-2.0\n",
"#\n",
"# Unless required by applicable law or agreed to in writing, software\n",
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"# See the License for the specific language governing permissions and\n",
"# limitations under the License."
],
"execution_count": 1,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "O6c3qfq5Zv57",
"colab_type": "text"
},
"source": [
"# MNIST Model TensorFlow Training, IREE Execution\n",
"\n",
"## Overview\n",
"\n",
"This notebook creates and trains a TensorFlow 2.0 model for recognizing handwritten digits using the [MNIST dataset](https://en.wikipedia.org/wiki/MNIST_database), then compiles and executes that trained model using IREE.\n",
"\n",
"## Running Locally\n",
"\n",
"* Refer to [iree/docs/using_colab.md](https://github.com/google/iree/blob/main/docs/using_colab.md) for general information\n",
"* Ensure that you have a recent version of TensorFlow 2.0 [installed on your system](https://www.tensorflow.org/install)\n",
"* Enable IREE/TF integration by adding to your user.bazelrc: `build --define=iree_tensorflow=true`\n",
"* Start colab by running `python colab/start_colab_kernel.py` (see that file for additional instructions)\n",
"* Note: you may need to restart your runtime in order to re-run certain cells. Some of the APIs are not yet stable enough for repeated invocations"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wBXlE69Ia2QU",
"colab_type": "text"
},
"source": [
"# Setup Steps"
]
},
{
"cell_type": "code",
"metadata": {
"id": "EPF7RGQDYK-M",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 51
},
"outputId": "fe0d703a-2ad7-4d14-9aef-c69b4c342a16"
},
"source": [
"import os\n",
"import numpy as np\n",
"import tensorflow as tf\n",
"from matplotlib import pyplot as plt\n",
"from pyiree.tf import compiler as ireec\n",
"from pyiree import rt as ireert\n",
"\n",
"tf.compat.v1.enable_eager_execution()\n",
"\n",
"SAVE_PATH = os.path.join(os.environ[\"HOME\"], \"saved_models\")\n",
"os.makedirs(SAVE_PATH, exist_ok=True)\n",
"\n",
"# Print version information for future notebook users to reference.\n",
"print(\"TensorFlow version: \", tf.__version__)\n",
"print(\"Numpy version: \", np.__version__)"
],
"execution_count": 2,
"outputs": [
{
"output_type": "stream",
"text": [
"TensorFlow version: 2.5.0-dev20200626\n",
"Numpy version: 1.18.4\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "43BH_9YcsGs8",
"colab_type": "code",
"cellView": "form",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"outputId": "46a560cb-5947-4cfa-f71e-9065bf2c07ab"
},
"source": [
"#@title Notebook settings { run: \"auto\" }\n",
"\n",
"#@markdown -----\n",
"#@markdown ### Configuration\n",
"\n",
"backend_choice = \"GPU (vulkan-spirv)\" #@param [ \"GPU (vulkan-spirv)\", \"CPU (VMLA)\" ]\n",
"\n",
"if backend_choice == \"GPU (vulkan-spirv)\":\n",
" backend_name = \"vulkan-spirv\"\n",
" driver_name = \"vulkan\"\n",
"else:\n",
" backend_name = \"vmla\"\n",
" driver_name = \"vmla\"\n",
"tf.print(\"Using IREE compiler backend '%s' and runtime driver '%s'\" % (backend_name, driver_name))\n",
"\n",
"#@markdown -----\n",
"#@markdown ### Training Parameters\n",
"\n",
"#@markdown <sup>Batch size used to subdivide the training and evaluation samples</sup>\n",
"batch_size = 200 #@param { type: \"slider\", min: 10, max: 400 }\n",
"\n",
"#@markdown <sup>Epochs for training/eval. Higher values take longer to run but generally produce more accurate models</sup>\n",
"num_epochs = 5 #@param { type: \"slider\", min: 1, max: 20 }\n",
"\n",
"#@markdown -----"
],
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"text": [
"Using IREE compiler backend 'vulkan-spirv' and runtime driver 'vulkan'\r\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5vkQOMOMbXdy",
"colab_type": "text"
},
"source": [
"# Create and Train MNIST Model in TensorFlow\n",
"\n",
"The specific details of the training process here aren't critical to the model compilation and execution through IREE."
]
},
{
"cell_type": "code",
"metadata": {
"id": "GXZIrReTbTHN",
"colab_type": "code",
"cellView": "form",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 486
},
"outputId": "9c01fab1-f8cb-4a63-fff1-6b82a9b6b49d"
},
"source": [
"#@title Load MNIST dataset, setup training and evaluation\n",
"\n",
"NUM_CLASSES = 10 # One per digit [0, 1, 2, ..., 9]\n",
"IMG_ROWS, IMG_COLS = 28, 28\n",
"\n",
"(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()\n",
"tf.print(\"Loaded MNIST dataset!\")\n",
"\n",
"x_train = x_train.reshape(x_train.shape[0], IMG_ROWS, IMG_COLS, 1)\n",
"x_test = x_test.reshape(x_test.shape[0], IMG_ROWS, IMG_COLS, 1)\n",
"input_shape = (IMG_ROWS, IMG_COLS, 1)\n",
"\n",
"# Scale pixel values from [0, 255] integers to [0.0, 1.0] floats.\n",
"x_train = x_train.astype(\"float32\") / 255\n",
"x_test = x_test.astype(\"float32\") / 255\n",
"\n",
"steps_per_epoch = int(x_train.shape[0] / batch_size)\n",
"steps_per_eval = int(x_test.shape[0] / batch_size)\n",
"\n",
"# Convert class vectors to binary class matrices.\n",
"y_train = tf.keras.utils.to_categorical(y_train, NUM_CLASSES)\n",
"y_test = tf.keras.utils.to_categorical(y_test, NUM_CLASSES)\n",
"\n",
"# Construct batched datasets for training/evaluation.\n",
"train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n",
"train_dataset = train_dataset.batch(batch_size, drop_remainder=True)\n",
"test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test))\n",
"test_dataset = test_dataset.batch(batch_size, drop_remainder=True)\n",
"\n",
"# Create a distribution strategy for the dataset (single machine).\n",
"strategy = tf.distribute.experimental.CentralStorageStrategy()\n",
"train_dist_ds = strategy.experimental_distribute_dataset(train_dataset)\n",
"test_dist_ds = strategy.experimental_distribute_dataset(test_dataset)\n",
"\n",
"tf.print(\"Configured data for training and evaluation!\")\n",
"tf.print(\" sample shape: %s\" % str(x_train[0].shape))\n",
"tf.print(\" training samples: %s\" % x_train.shape[0])\n",
"tf.print(\" test samples: %s\" % x_test.shape[0])\n",
"tf.print(\" epochs: %s\" % num_epochs)\n",
"tf.print(\" steps/epoch: %s\" % steps_per_epoch)\n",
"tf.print(\" steps/eval : %s\" % steps_per_eval)\n",
"\n",
"tf.print(\"\")\n",
"tf.print(\"Sample image from the dataset:\")\n",
"SAMPLE_EXAMPLE_INDEX = 1\n",
"sample_image = x_test[SAMPLE_EXAMPLE_INDEX]\n",
"sample_image_batch = np.expand_dims(sample_image, axis=0)\n",
"sample_label = y_test[SAMPLE_EXAMPLE_INDEX]\n",
"plt.imshow(sample_image.reshape(IMG_ROWS, IMG_COLS))\n",
"plt.show()\n",
"tf.print(\"\\nGround truth labels: %s\" % str(sample_label))"
],
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"text": [
"Loaded MNIST dataset!\r\n",
"INFO:tensorflow:ParameterServerStrategy (CentralStorageStrategy if you are using a single machine) with compute_devices = ['/job:localhost/replica:0/task:0/device:CPU:0'], variable_device = '/job:localhost/replica:0/task:0/device:CPU:0'\n",
"Configured data for training and evaluation!\n",
" sample shape: (28, 28, 1)\n",
" training samples: 60000\n",
" test samples: 10000\n",
" epochs: 5\n",
" steps/epoch: 300\n",
" steps/eval : 50\n",
"\n",
"Sample image from the dataset:\n"
],
"name": "stdout"
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAANxUlEQVR4nO3de4xU93nG8ecBc7EwtqFgSjGygwOycSpDsiJx3YstN6nDH8GRckOJgyNHpGrcJhJSYrmV4igXWVVst1WjVCRGIZUvcn2JqWIlJsSR6wRhLy4BbJJAXOpgVmDEpuBWhd312z/2UG3wzpll5sycMe/3I41m5rxzznk18OyZmd+c+TkiBODsN6nuBgB0B2EHkiDsQBKEHUiCsANJnNPNnU31tJiuGd3cJZDK/+q/dTJOeLxaW2G3fYOkv5c0WdK3IuLOssdP1wy909e3s0sAJbbFloa1ll/G254s6euS3itpqaTVtpe2uj0AndXOe/YVkvZFxEsRcVLSg5JWVdMWgKq1E/YFkn495v6BYtlvsb3Wdr/t/iGdaGN3ANrRTtjH+xDgDd+9jYj1EdEXEX1TNK2N3QFoRzthPyBp4Zj7F0s62F47ADqlnbA/J2mx7bfYnirpI5I2VdMWgKq1PPQWEcO2b5X0A40OvW2IiBcq6wxApdoaZ4+IJyQ9UVEvADqIr8sCSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5BEV39KGq3Z/+WrS+sj0xtPzjn3yldL19161SMt9XTKZT/6RGl95rPnNqzN+4eftrVvnBmO7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBOPsPWDwe4tL67uX/WPH9j3UeIh+Qn5+3bdK6/f1zW9Ye2jzn5SuO7Jnb0s9YXwc2YEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcbZu6DZOPpPlj3YsX3/028Wldbv3vru0vqll5SfD//k0kdL6x+dOdCw9pWb55Suu+jzjLNXqa2w294v6bikEUnDEdFXRVMAqlfFkf26iDhSwXYAdBDv2YEk2g17SHrS9nbba8d7gO21tvtt9w/pRJu7A9Cqdl/GXxMRB21fJGmz7Z9HxNNjHxAR6yWtl6TzPbvN0y4AtKqtI3tEHCyuD0t6TNKKKpoCUL2Ww257hu2Zp25Leo+k3VU1BqBa7byMnyfpMduntnN/RHy/kq7eZIavf0dp/UdXfb3JFqaUVv9ucElp/akPl4x4Hjxcuu6Swf7S+qTp00vrX932+6X12+fsalgbnjVcui6q1XLYI+IlSVdV2AuADmLoDUiCsANJEHYgCcIOJEHYgSQ4xbUCry2YWlqf1ORvarOhtR+/r3x4a+SlX5TW27Hvi8tL6/fPvqvJFqY1rFz8fY413cSzDSRB2IEkCDuQBGEHkiDsQBKEHUiCsANJMM5egQu/s7W0/oH+j5XWPXistD48sP8MO6rOJ1f+sLR+3qTG4+joLRzZgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJxtm7YOTFX9bdQkP7v3J1af2WC7/WZAvlPzW9buBdDWszf7indN2RJnvGmeHIDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJMM5+lvvNTeXj6D/5ePk4+gWTysfRt56YXFrf8eXGvzt/7rFnS9dFtZoe2W1vsH3Y9u4xy2bb3mx7b3E9q7NtAmjXRF7Gf1vSDactu03SlohYLGlLcR9AD2sa9oh4WtLR0xavkrSxuL1R0o0V9wWgYq1+QDcvIgYkqbi+qNEDba+13W+7f0gnWtwdgHZ1/NP4iFgfEX0R0TelZJI/AJ3VatgP2Z4vScX14epaAtAJrYZ9k6Q1xe01kh6vph0AndJ0nN32A5KulTTH9gFJX5B0p6SHbN8i6WVJH+xkk2jdkbdHab3ZOHoza378ydL6ku8ylt4rmoY9IlY3KF1fcS8AOoivywJJEHYgCcIOJEHYgSQIO5AEp7ieBU5uvqRhbevldzVZu3zo7aqta0rrV6z7VWmdn4PuHRzZgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJxtnfBM5ZdGlp/Utv/ZeGtVlNTmHd3uSXwi75UvlI+cjgYPkG0DM4sgNJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEoyzvwlc9tArpfXlU1v/m716y5+X1pf87LmWt43ewpEdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5JgnL0HDK65urT+xXnNfvt9WsPKmv1/WrrmFZ/bV1rnd9/PHk2P7LY32D5se/eYZXfYfsX2juKysrNtAmjXRF7Gf1vSDeMsvycilhWXJ6ptC0DVmoY9Ip6WdLQLvQDooHY+oLvV9s7iZf6sRg+yvdZ2v+3+ITX5wTMAHdNq2L8h6TJJyyQNSGr4CVJErI+Ivojom1LyQRKAzmop7BFxKCJGIuJ1Sd+UtKLatgBUraWw254/5u77Je1u9FgAvaHpOLvtByRdK2mO7QOSviDpWtvLJIWk/ZI+1cEe3/TOWfB7pfU/+qttpfXzJrX+9mfri28trS8Z5Hz1LJqGPSJWj7P43g70AqCD+LoskARhB5Ig7EAShB1IgrADSXCKaxfsuX1haf27v/uvbW3/ul0fbFjjFFacwpEdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5JgnL0Ltr/vniaPaO8XfC74i9cb1oYHB9vaNs4eHNmBJAg7kARhB5Ig7EAShB1IgrADSRB2IAnG2c8CQ/MuaFibcnJBFzt5o5FXjzSsxYny6cA8rfz7B5PnzmmpJ0kamXthaX3vuqktb3siYsQNa5f/ZZPfIDh2rKV9cmQHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQYZz8LfO/hDXW30NAf/Pt4kwCPOnLo/NJ1Z809Xlrf9o77W+qp1y39m1tL64s+t7Wl7TY9stteaPsp23tsv2D7M8Xy2bY3295bXM9qqQMAXTGRl/HDktZFxBWS3iXp07aXSrpN0paIWCxpS3EfQI9qGvaIGIiI54vbxyXtkbRA0ipJG4uHbZR0Y6eaBNC+M/qAzvalkpZL2iZpXkQMSKN/ECRd1GCdtbb7bfcPqfy70AA6Z8Jht32epEckfTYiJvxN/IhYHxF9EdE3pc0fVgTQugmF3fYUjQb9voh4tFh8yPb8oj5f0uHOtAigCk2H3mxb0r2S9kTE3WNKmyStkXRncf14Rzo8C6x68aOl9S1ve7hLnXTfT5c/UNu+/ydONqwNReOf356IlTtvLq3/147WT79d8Mxwy+uWmcg4+zWSbpK0y/aOYtntGg35Q7ZvkfSypMaThAOoXdOwR8QzkhqdaX99te0A6BS+LgskQdiBJAg7kARhB5Ig7EASnOLaBef+2X+U1q/8avkpjdHBf6WZlx8trXfyNNIr/+0TpfV4eUZb21/08GuNi8/uamvbs7S3rXodOLIDSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKOiK7t7HzPjneaE+WATtkWW3Qsjo57lipHdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiiadhtL7T9lO09tl+w/Zli+R22X7G9o7is7Hy7AFo1kekHhiWti4jnbc+UtN325qJ2T0R8rXPtAajKROZnH5A0UNw+bnuPpAWdbgxAtc7oPbvtSyUtl7StWHSr7Z22N9ie1WCdtbb7bfcP6URbzQJo3YTDbvs8SY9I+mxEHJP0DUmXSVqm0SP/XeOtFxHrI6IvIvqmaFoFLQNoxYTCbnuKRoN+X0Q8KkkRcSgiRiLidUnflLSic20CaNdEPo23pHsl7YmIu8csnz/mYe+XtLv69gBUZSKfxl8j6SZJu2zvKJbdLmm17WWSQtJ+SZ/qSIcAKjGRT+OfkTTe71A/UX07ADqFb9ABSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeScER0b2f2q5L+c8yiOZKOdK2BM9OrvfVqXxK9tarK3i6JiLnjFboa9jfs3O6PiL7aGijRq731al8SvbWqW73xMh5IgrADSdQd9vU1779Mr/bWq31J9NaqrvRW63t2AN1T95EdQJcQdiCJWsJu+wbbv7C9z/ZtdfTQiO39tncV01D319zLBtuHbe8es2y27c229xbX486xV1NvPTGNd8k047U+d3VPf9719+y2J0v6paR3Szog6TlJqyPixa420oDt/ZL6IqL2L2DY/mNJr0n6TkS8rVj2t5KORsSdxR/KWRHx+R7p7Q5Jr9U9jXcxW9H8sdOMS7pR0s2q8bkr6etD6sLzVseRfYWkfRHxUkSclPSgpFU19NHzIuJpSUdPW7xK0sbi9kaN/mfpuga99YSIGIiI54vbxyWdmma81ueupK+uqCPsCyT9esz9A+qt+d5D0pO2t9teW3cz45gXEQPS6H8eSRfV3M/pmk7j3U2nTTPeM89dK9Oft6uOsI83lVQvjf9dExFvl/ReSZ8uXq5iYiY0jXe3jDPNeE9odfrzdtUR9gOSFo65f7GkgzX0Ma6IOFhcH5b0mHpvKupDp2bQLa4P19zP/+ulabzHm2ZcPfDc1Tn9eR1hf07SYttvsT1V0kckbaqhjzewPaP44ES2Z0h6j3pvKupNktYUt9dIerzGXn5Lr0zj3WiacdX83NU+/XlEdP0iaaVGP5H/laS/rqOHBn0tkvSz4vJC3b1JekCjL+uGNPqK6BZJvyNpi6S9xfXsHurtnyXtkrRTo8GaX1Nvf6jRt4Y7Je0oLivrfu5K+urK88bXZYEk+AYdkARhB5Ig7EAShB1IgrADSRB2IAnCDiTxfy43Cn7d/BIFAAAAAElFTkSuQmCC\n"
},
"metadata": {
"tags": [],
"needs_background": "light"
}
},
{
"output_type": "stream",
"text": [
"\n",
"Ground truth labels: [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]\r\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "tHq96SIJcNfx",
"colab_type": "code",
"cellView": "both",
"colab": {}
},
"source": [
"#@title Define MNIST model architecture using tf.keras API\n",
"\n",
"def simple_mnist_model(input_shape):\n",
" \"\"\"Creates a simple (multi-layer perceptron) MNIST model.\"\"\"\n",
"\n",
" model = tf.keras.models.Sequential()\n",
" # Flatten to a 1d array (e.g. 28x28 -> 784)\n",
" model.add(tf.keras.layers.Flatten(input_shape=input_shape))\n",
" # Fully-connected neural layer with 128 neurons, RELU activation\n",
" model.add(tf.keras.layers.Dense(128, activation='relu'))\n",
" # Fully-connected neural layer returning probability scores for each class\n",
" model.add(tf.keras.layers.Dense(10, activation='softmax'))\n",
" return model"
],
"execution_count": 5,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "7Gdxh7qWcPSO",
"colab_type": "code",
"cellView": "form",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 374
},
"outputId": "50b0aede-9a8f-4ce5-b340-783be5fbfc06"
},
"source": [
"#@title Train the Keras model\n",
"\n",
"with strategy.scope():\n",
" model = simple_mnist_model(input_shape)\n",
" tf.print(\"Constructed Keras MNIST model, training...\")\n",
"\n",
" optimizer = tf.keras.optimizers.SGD(learning_rate=0.05)\n",
" training_loss = tf.keras.metrics.Mean(\"training_loss\", dtype=tf.float32)\n",
" training_accuracy = tf.keras.metrics.CategoricalAccuracy(\n",
" \"training_accuracy\", dtype=tf.float32)\n",
" test_loss = tf.keras.metrics.Mean(\"test_loss\", dtype=tf.float32)\n",
" test_accuracy = tf.keras.metrics.CategoricalAccuracy(\n",
" \"test_accuracy\", dtype=tf.float32)\n",
"\n",
" @tf.function\n",
" def train_step(iterator):\n",
" \"\"\"Training StepFn.\"\"\"\n",
"\n",
" def step_fn(inputs):\n",
" \"\"\"Per-Replica StepFn.\"\"\"\n",
" images, labels = inputs\n",
" with tf.GradientTape() as tape:\n",
" logits = model(images, training=True)\n",
" loss = tf.keras.losses.categorical_crossentropy(labels, logits)\n",
" loss = tf.reduce_mean(loss) / strategy.num_replicas_in_sync\n",
" grads = tape.gradient(loss, model.trainable_variables)\n",
" optimizer.apply_gradients(zip(grads, model.trainable_variables))\n",
" training_loss.update_state(loss)\n",
" training_accuracy.update_state(labels, logits)\n",
"\n",
" strategy.run(step_fn, args=(next(iterator),))\n",
"\n",
" @tf.function\n",
" def test_step(iterator):\n",
" \"\"\"Evaluation StepFn.\"\"\"\n",
"\n",
" def step_fn(inputs):\n",
" images, labels = inputs\n",
" logits = model(images, training=False)\n",
" loss = tf.keras.losses.categorical_crossentropy(labels, logits)\n",
" loss = tf.reduce_mean(loss) / strategy.num_replicas_in_sync\n",
" test_loss.update_state(loss)\n",
" test_accuracy.update_state(labels, logits)\n",
"\n",
" strategy.run(step_fn, args=(next(iterator),))\n",
"\n",
" for epoch in range(0, num_epochs):\n",
" tf.print(\"Running epoch #%s\" % (epoch + 1))\n",
"\n",
" train_iterator = iter(train_dist_ds)\n",
" for step in range(steps_per_epoch):\n",
" train_step(train_iterator)\n",
" tf.print(\" Training loss: %f, accuracy: %f\" % (training_loss.result(), training_accuracy.result() * 100))\n",
" training_loss.reset_states()\n",
" training_accuracy.reset_states()\n",
"\n",
" test_iterator = iter(test_dist_ds)\n",
" for step in range(steps_per_eval):\n",
" test_step(test_iterator)\n",
" tf.print(\" Test loss : %f, accuracy: %f\" % (test_loss.result(), test_accuracy.result() * 100))\n",
" test_loss.reset_states()\n",
" test_accuracy.reset_states()\n",
"\n",
" tf.print(\"Completed training!\")\n",
" tf.print(\"\")\n",
"\n",
" # Run a single prediction on the trained model\n",
" tf_prediction = model(sample_image_batch, training=False)\n",
" tf.print(\"Sample prediction:\")\n",
" tf.print(tf_prediction[0] * 100.0, summarize=100)\n",
" tf.print(\"\")"
],
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"text": [
"Constructed Keras MNIST model, training...\n",
"Running epoch #1\n",
" Training loss: 0.732439, accuracy: 81.403336\n",
" Test loss : 0.390855, accuracy: 89.490005\n",
"Running epoch #2\n",
" Training loss: 0.365308, accuracy: 89.811668\n",
" Test loss : 0.315630, accuracy: 91.119995\n",
"Running epoch #3\n",
" Training loss: 0.312111, accuracy: 91.129997\n",
" Test loss : 0.281829, accuracy: 92.040001\n",
"Running epoch #4\n",
" Training loss: 0.281028, accuracy: 92.038330\n",
" Test loss : 0.258432, accuracy: 92.629997\n",
"Running epoch #5\n",
" Training loss: 0.257909, accuracy: 92.753334\n",
" Test loss : 0.240058, accuracy: 93.229996\n",
"Completed training!\n",
"\n",
"Sample prediction:\n",
"[0.243134052 0.00337268948 95.5214081 0.925373673 2.25061958e-05 0.992091119 2.20864391 3.87712953e-06 0.105901182 4.44369543e-05]\n",
"\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "DmespEaFcSEL",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 153
},
"outputId": "3c8579db-7b3c-4164-ff91-394346595107"
},
"source": [
"#@title Export the trained model as a SavedModel, with IREE-compatible settings\n",
"\n",
"# Since the model was written in sequential style, explicitly wrap in a module.\n",
"saved_model_dir = \"/tmp/mnist.sm\"\n",
"inference_module = tf.Module()\n",
"inference_module.model = model\n",
"# Hack: Convert to static shape. Won't be necessary once dynamic shapes are in.\n",
"dynamic_input_shape = list(model.inputs[0].shape)\n",
"dynamic_input_shape[0] = 1 # Make fixed (batch=1)\n",
"# Produce a concrete function.\n",
"inference_module.predict = tf.function(\n",
" input_signature=[\n",
" tf.TensorSpec(dynamic_input_shape, model.inputs[0].dtype)])(\n",
" lambda x: model.call(x, training=False))\n",
"save_options = tf.saved_model.SaveOptions(save_debug_info=True)\n",
"tf.print(\"Exporting SavedModel to %s\" % saved_model_dir)\n",
"tf.saved_model.save(inference_module, saved_model_dir, options=save_options)"
],
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"text": [
"Exporting SavedModel to /tmp/mnist.sm\r\n",
"WARNING:tensorflow:From c:\\users\\scott\\scoop\\apps\\python\\current\\lib\\site-packages\\tensorflow\\python\\training\\tracking\\tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"This property should not be used in TensorFlow 2.0, as updates are applied automatically.\n",
"WARNING:tensorflow:From c:\\users\\scott\\scoop\\apps\\python\\current\\lib\\site-packages\\tensorflow\\python\\training\\tracking\\tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"This property should not be used in TensorFlow 2.0, as updates are applied automatically.\n",
"INFO:tensorflow:Assets written to: /tmp/mnist.sm\\assets\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nZdVUd_dgTtc",
"colab_type": "text"
},
"source": [
"# Compile and Execute MNIST Model using IREE"
]
},
{
"cell_type": "code",
"metadata": {
"id": "rqwIx4j4gS1a",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 836
},
"outputId": "24cded90-c436-47ce-b4f4-7a5da46ea38a"
},
"source": [
"#@title Load the SavedModel into IREE's compiler as MLIR xla_hlo\n",
"\n",
"compiler_module = ireec.tf_load_saved_model(\n",
" saved_model_dir, exported_names=[\"predict\"])\n",
"tf.print(\"Imported MLIR:\\n\", compiler_module.to_asm(large_element_limit=100))\n",
"\n",
"# Write to a file for use outside of this notebook.\n",
"mnist_mlir_path = os.path.join(SAVE_PATH, \"mnist.mlir\")\n",
"with open(mnist_mlir_path, \"wt\") as output_file:\n",
" output_file.write(compiler_module.to_asm())\n",
"print(\"Wrote MLIR to path '%s'\" % mnist_mlir_path)"
],
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"text": [
"Imported MLIR:\n",
" \n",
"\n",
"module attributes {tf.versions = {bad_consumers = [], min_consumer = 12 : i32, producer = 443 : i32}} {\n",
" flow.variable @\"__iree_flow___sm_node14__model.layer-1.kernel\" opaque<\"\", \"0xDEADBEEF\"> : tensor<784x128xf32> attributes {sym_visibility = \"private\"}\n",
" flow.variable @\"__iree_flow___sm_node15__model.layer-1.bias\" opaque<\"\", \"0xDEADBEEF\"> : tensor<128xf32> attributes {sym_visibility = \"private\"}\n",
" flow.variable @\"__iree_flow___sm_node20__model.layer-2.kernel\" opaque<\"\", \"0xDEADBEEF\"> : tensor<128x10xf32> attributes {sym_visibility = \"private\"}\n",
" flow.variable @\"__iree_flow___sm_node21__model.layer-2.bias\" dense<[-0.114143081, 0.0953421518, 4.84912744E-5, -0.0384164825, 0.0063888072, 0.218958765, 0.0256200824, 0.0551806651, -0.22108613, -0.0278935507]> : tensor<10xf32> attributes {sym_visibility = \"private\"}\n",
" func @predict(%arg0: tensor<1x28x28x1xf32> {tf._user_specified_name = \"x\"}) -> tensor<1x10xf32> attributes {iree.module.export, iree.reflection = {abi = \"sip\", abiv = 1 : i32, sip = \"I8!S5!k0_0R3!_0\"}, tf._input_shapes = [#tf.shape<1x28x28x1>, #tf.shape<*>, #tf.shape<*>, #tf.shape<*>, #tf.shape<*>], tf.signature.is_stateful} {\n",
" %0 = flow.variable.address @\"__iree_flow___sm_node14__model.layer-1.kernel\" : !iree.ptr<tensor<784x128xf32>>\n",
" %1 = flow.variable.address @\"__iree_flow___sm_node15__model.layer-1.bias\" : !iree.ptr<tensor<128xf32>>\n",
" %2 = flow.variable.address @\"__iree_flow___sm_node20__model.layer-2.kernel\" : !iree.ptr<tensor<128x10xf32>>\n",
" %3 = flow.variable.address @\"__iree_flow___sm_node21__model.layer-2.bias\" : !iree.ptr<tensor<10xf32>>\n",
" %4 = xla_hlo.constant dense<0xFF800000> : tensor<f32>\n",
" %5 = xla_hlo.constant dense<0.000000e+00> : tensor<f32>\n",
" %6 = flow.variable.load.indirect %3 : !iree.ptr<tensor<10xf32>> -> tensor<10xf32>\n",
" %7 = flow.variable.load.indirect %2 : !iree.ptr<tensor<128x10xf32>> -> tensor<128x10xf32>\n",
" %8 = flow.variable.load.indirect %1 : !iree.ptr<tensor<128xf32>> -> tensor<128xf32>\n",
" %9 = flow.variable.load.indirect %0 : !iree.ptr<tensor<784x128xf32>> -> tensor<784x128xf32>\n",
" %10 = \"xla_hlo.reshape\"(%arg0) : (tensor<1x28x28x1xf32>) -> tensor<1x784xf32>\n",
" %11 = \"xla_hlo.dot\"(%10, %9) : (tensor<1x784xf32>, tensor<784x128xf32>) -> tensor<1x128xf32>\n",
" %12 = \"xla_hlo.broadcast_in_dim\"(%8) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x128xf32>\n",
" %13 = xla_hlo.add %11, %12 : tensor<1x128xf32>\n",
" %14 = \"xla_hlo.broadcast_in_dim\"(%5) {broadcast_dimensions = dense<[]> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x128xf32>\n",
" %15 = xla_hlo.maximum %14, %13 : tensor<1x128xf32>\n",
" %16 = \"xla_hlo.dot\"(%15, %7) : (tensor<1x128xf32>, tensor<128x10xf32>) -> tensor<1x10xf32>\n",
" %17 = \"xla_hlo.broadcast_in_dim\"(%6) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<10xf32>) -> tensor<1x10xf32>\n",
" %18 = xla_hlo.add %16, %17 : tensor<1x10xf32>\n",
" %19 = \"xla_hlo.reduce\"(%18, %4) ( {\n",
" ^bb0(%arg1: tensor<f32>, %arg2: tensor<f32>): // no predecessors\n",
" %26 = xla_hlo.maximum %arg1, %arg2 : tensor<f32>\n",
" \"xla_hlo.return\"(%26) : (tensor<f32>) -> ()\n",
" }) {dimensions = dense<1> : tensor<1xi64>} : (tensor<1x10xf32>, tensor<f32>) -> tensor<1xf32>\n",
" %20 = \"xla_hlo.broadcast_in_dim\"(%19) {broadcast_dimensions = dense<0> : tensor<1xi64>} : (tensor<1xf32>) -> tensor<1x10xf32>\n",
" %21 = xla_hlo.subtract %18, %20 : tensor<1x10xf32>\n",
" %22 = \"xla_hlo.exponential\"(%21) : (tensor<1x10xf32>) -> tensor<1x10xf32>\n",
" %23 = \"xla_hlo.reduce\"(%22, %5) ( {\n",
" ^bb0(%arg1: tensor<f32>, %arg2: tensor<f32>): // no predecessors\n",
" %26 = xla_hlo.add %arg1, %arg2 : tensor<f32>\n",
" \"xla_hlo.return\"(%26) : (tensor<f32>) -> ()\n",
" }) {dimensions = dense<1> : tensor<1xi64>} : (tensor<1x10xf32>, tensor<f32>) -> tensor<1xf32>\n",
" %24 = \"xla_hlo.broadcast_in_dim\"(%23) {broadcast_dimensions = dense<0> : tensor<1xi64>} : (tensor<1xf32>) -> tensor<1x10xf32>\n",
" %25 = xla_hlo.divide %22, %24 : tensor<1x10xf32>\n",
" return %25 : tensor<1x10xf32>\n",
" }\n",
"}\r\n",
"Wrote MLIR to path 'C:\\Users\\Scott\\saved_models\\mnist.mlir'\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "IDHI7h3khJr9",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 51
},
"outputId": "b8958b7f-c7bb-4fbd-b800-e58c46134086"
},
"source": [
"#@title Compile the xla_hlo MLIR and prepare a context to execute it\n",
"\n",
"# Compile the MLIR module into a VM module for execution\n",
"flatbuffer_blob = compiler_module.compile(target_backends=[backend_name])\n",
"vm_module = ireert.VmModule.from_flatbuffer(flatbuffer_blob)\n",
"\n",
"# Register the module with a runtime context\n",
"config = ireert.Config(driver_name)\n",
"ctx = ireert.SystemContext(config=config)\n",
"ctx.add_module(vm_module)"
],
"execution_count": 9,
"outputs": [
{
"output_type": "stream",
"text": [
"Created IREE driver vulkan: <pyiree.rt.binding.HalDriver object at 0x000001DC44C47370>\n",
"SystemContext driver=<pyiree.rt.binding.HalDriver object at 0x000001DC44C47370>\n"
],
"name": "stderr"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "SKflpnLtkLYE",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 102
},
"outputId": "337ddf79-6746-4685-89f5-65787280c0af"
},
"source": [
"#@title Execute the compiled module and compare the results with TensorFlow\n",
"\n",
"# Invoke the 'predict' function with a single image as an argument\n",
"iree_prediction = ctx.modules.module.predict(sample_image_batch)\n",
"\n",
"tf.print(\"IREE prediction ('%s' backend, '%s' driver):\" % (backend_name, driver_name))\n",
"tf.print(tf.convert_to_tensor(iree_prediction[0]) * 100.0, summarize=100)\n",
"tf.print(\"\")\n",
"tf.print(\"TensorFlow prediction:\")\n",
"tf.print(tf_prediction[0] * 100.0, summarize=100)"
],
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"text": [
"IREE prediction ('vulkan-spirv' backend, 'vulkan' driver):\n",
"[0.243133873 0.00337268622 95.5214233 0.92537272 2.25061631e-05 0.992090821 2.20864058 3.87712225e-06 0.105901062 4.44369434e-05]\n",
"\n",
"TensorFlow prediction:\n",
"[0.243134052 0.00337268948 95.5214081 0.925373673 2.25061958e-05 0.992091119 2.20864391 3.87712953e-06 0.105901182 4.44369543e-05]\n"
],
"name": "stdout"
}
]
}
]
}