blob: 9312b664cd8f8149ef7f25f27eb980246cd5bac6 [file] [log] [blame]
func.func @i4_to_f32_1d() {
%input = util.unfoldable_constant dense<[0, 1, 2, 3, 4, 5, 6, 7]> : tensor<8xi4>
%0 = tensor.empty() : tensor<8xf32>
%res = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"]}
ins(%input : tensor<8xi4>) outs(%0 : tensor<8xf32>) {
^bb0(%in: i4, %out: f32):
%2 = arith.extui %in : i4 to i32
%3 = arith.uitofp %2 : i32 to f32
linalg.yield %3 : f32
} -> tensor<8xf32>
check.expect_eq_const(%res, dense<[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]> : tensor<8xf32>) : tensor<8xf32>
return
}
func.func @i4_to_f32_3d() {
%cst = util.unfoldable_constant dense<[
[0, 1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 11, 12, 13, 14, 15],
[0, 1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 11, 12, 13, 14, 15],
[0, 1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 11, 12, 13, 14, 15],
[0, 1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 11, 12, 13, 14, 15]
]> : tensor<8x8xi4>
%expanded_4 = tensor.expand_shape %cst [[0], [1, 2]] output_shape [8, 4, 2]: tensor<8x8xi4> into tensor<8x4x2xi4>
%0 = tensor.empty() : tensor<8x4x2xf32>
%5 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_4 : tensor<8x4x2xi4>) outs(%0 : tensor<8x4x2xf32>) {
^bb0(%in: i4, %out: f32):
%6 = arith.extui %in : i4 to i32
%7 = arith.uitofp %6 : i32 to f32
linalg.yield %7 : f32
} -> tensor<8x4x2xf32>
check.expect_almost_eq_const(%5, dense<[
[[0., 1.], [2., 3.], [4., 5.], [6., 7.]], [[8., 9.], [10., 11.], [12., 13.], [14., 15.]],
[[0., 1.], [2., 3.], [4., 5.], [6., 7.]], [[8., 9.], [10., 11.], [12., 13.], [14., 15.]],
[[0., 1.], [2., 3.], [4., 5.], [6., 7.]], [[8., 9.], [10., 11.], [12., 13.], [14., 15.]],
[[0., 1.], [2., 3.], [4., 5.], [6., 7.]], [[8., 9.], [10., 11.], [12., 13.], [14., 15.]]
]> : tensor<8x4x2xf32>) : tensor<8x4x2xf32>
return
}
func.func @i2_to_f32_1d() {
%input = util.unfoldable_constant dense<[0, 1, 2, 3, 3, 2, 1, 0]> : tensor<8xi2>
%0 = tensor.empty() : tensor<8xf32>
%res = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"]}
ins(%input : tensor<8xi2>) outs(%0 : tensor<8xf32>) {
^bb0(%in: i2, %out: f32):
%2 = arith.extui %in : i2 to i32
%3 = arith.uitofp %2 : i32 to f32
linalg.yield %3 : f32
} -> tensor<8xf32>
check.expect_eq_const(%res, dense<[0.0, 1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 0.0]> : tensor<8xf32>) : tensor<8xf32>
return
}
func.func @i2_to_f32_3d() {
%cst = util.unfoldable_constant dense<[
[0, 1, 2, 3, 0, 1, 2, 3], [3, 2, 1, 0, 2, 1, 0, 3],
[0, 1, 2, 3, 0, 1, 2, 3], [3, 2, 1, 0, 2, 1, 0, 3],
[0, 1, 2, 3, 0, 1, 2, 3], [3, 2, 1, 0, 2, 1, 0, 3],
[0, 1, 2, 3, 0, 1, 2, 3], [3, 2, 1, 0, 2, 1, 0, 3]
]> : tensor<8x8xi2>
%expanded_4 = tensor.expand_shape %cst [[0], [1, 2]] output_shape [8, 4, 2]: tensor<8x8xi2> into tensor<8x4x2xi2>
%0 = tensor.empty() : tensor<8x4x2xf32>
%5 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_4 : tensor<8x4x2xi2>) outs(%0 : tensor<8x4x2xf32>) {
^bb0(%in: i2, %out: f32):
%6 = arith.extui %in : i2 to i32
%7 = arith.uitofp %6 : i32 to f32
linalg.yield %7 : f32
} -> tensor<8x4x2xf32>
check.expect_almost_eq_const(%5, dense<[
[[0., 1.], [2., 3.], [0., 1.], [2., 3.]], [[3., 2.], [1., 0.], [2., 1.], [0., 3.]],
[[0., 1.], [2., 3.], [0., 1.], [2., 3.]], [[3., 2.], [1., 0.], [2., 1.], [0., 3.]],
[[0., 1.], [2., 3.], [0., 1.], [2., 3.]], [[3., 2.], [1., 0.], [2., 1.], [0., 3.]],
[[0., 1.], [2., 3.], [0., 1.], [2., 3.]], [[3., 2.], [1., 0.], [2., 1.], [0., 3.]]
]> : tensor<8x4x2xf32>) : tensor<8x4x2xf32>
return
}