| # Copyright 2020 Google LLC |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # https://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| |
| import numpy as np |
| from pyiree.tf.support import tf_test_utils |
| import tensorflow.compat.v2 as tf |
| |
| |
| class BroadcastToModule(tf.Module): |
| |
| def __init__(self): |
| pass |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([], tf.float32), |
| tf.TensorSpec([2], tf.int32) |
| ]) |
| def scalar_broadcast_to(self, x, shape): |
| return tf.broadcast_to(x, shape) |
| |
| |
| @tf_test_utils.compile_module(BroadcastToModule) |
| class BroadcastToTest(tf_test_utils.TracedModuleTestCase): |
| |
| def test_scalar_broadcast_to(self): |
| |
| def scalar_broadcast_to(module): |
| x = np.array(1, dtype=np.float32) |
| shape = np.array([3, 3], dtype=np.int32) |
| result = module.scalar_broadcast_to(x, shape) |
| |
| self.compare_backends(scalar_broadcast_to) |
| |
| |
| if __name__ == "__main__": |
| if hasattr(tf, "enable_v2_behavior"): |
| tf.enable_v2_behavior() |
| tf.test.main() |