| # Lint as: python3 |
| # Copyright 2019 The IREE Authors |
| # |
| # Licensed under the Apache License v2.0 with LLVM Exceptions. |
| # See https://llvm.org/LICENSE.txt for license information. |
| # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| |
| from absl import app |
| from iree.tf.support import tf_test_utils |
| from iree.tf.support import tf_utils |
| import numpy as np |
| import tensorflow.compat.v2 as tf |
| |
| |
| class ConvTransposeModule(tf.Module): |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([2, 2, 1, 1], tf.float32), |
| tf.TensorSpec([1, 2, 4, 1], tf.float32), |
| ]) |
| def conv2d_transpose_same(self, filt, img): |
| input_sizes = [1, 2, 4, 1] |
| strides = [1, 1, 1, 1] |
| padding = "SAME" |
| return tf.nn.conv2d_transpose(img, |
| filt, |
| input_sizes, |
| strides, |
| padding, |
| name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 4, 2, 3], tf.float32), |
| tf.TensorSpec([1, 1, 4, 3], tf.float32), |
| ]) |
| def conv2d_transpose_dilated_w(self, filt, img): |
| input_sizes = [1, 1, 10, 2] |
| strides = [1, 1, 2, 1] |
| padding = "VALID" |
| return tf.nn.conv2d_transpose(img, |
| filt, |
| input_sizes, |
| strides, |
| padding, |
| name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([4, 1, 2, 3], tf.float32), |
| tf.TensorSpec([1, 4, 1, 3], tf.float32), |
| ]) |
| def conv2d_transpose_dilated_h(self, filt, img): |
| input_sizes = [1, 10, 1, 2] |
| strides = [1, 2, 1, 1] |
| padding = "VALID" |
| return tf.nn.conv2d_transpose(img, |
| filt, |
| input_sizes, |
| strides, |
| padding, |
| name="result") |
| |
| |
| class ConvTransposeTest(tf_test_utils.TracedModuleTestCase): |
| |
| def __init__(self, *args, **kwargs): |
| super().__init__(*args, **kwargs) |
| self._modules = tf_test_utils.compile_tf_module(ConvTransposeModule) |
| |
| # yapf: disable |
| def test_transposed(self): |
| def transposed(module): |
| kernel = tf_utils.uniform([2, 2, 1, 1], dtype=np.float32) |
| img = tf_utils.uniform([1, 2, 4, 1], dtype=np.float32) |
| |
| module.conv2d_transpose_same(kernel, img) |
| self.compare_backends(transposed, self._modules) |
| |
| def test_transposed_dilated_w(self): |
| def transposed(module): |
| kernel = tf_utils.uniform([1, 4, 2, 3], dtype=np.float32) |
| img = tf_utils.uniform([1, 1, 4, 3], dtype=np.float32) |
| |
| module.conv2d_transpose_dilated_w(kernel, img) |
| self.compare_backends(transposed, self._modules) |
| |
| def test_transposed_dilated_h(self): |
| def transposed(module): |
| kernel = tf_utils.uniform([4, 1, 2, 3], dtype=np.float32) |
| img = tf_utils.uniform([1, 4, 1, 3], dtype=np.float32) |
| |
| module.conv2d_transpose_dilated_h(kernel, img) |
| self.compare_backends(transposed, self._modules) |
| # yapf: enable |
| |
| |
| def main(argv): |
| del argv # Unused |
| if hasattr(tf, 'enable_v2_behavior'): |
| tf.enable_v2_behavior() |
| tf.test.main() |
| |
| |
| if __name__ == '__main__': |
| app.run(main) |