blob: 6738f09018a75832812b9e90c888afdbd6b9f3c8 [file] [log] [blame]
// RUN: iree-run-mlir --Xcompiler,iree-hal-target-backends=cuda %s
//===----------------------------------------------------------------------===//
// Transpose ops.
// Naming convention: '_'.join(
// [transpose,
// {output-shape])
//
//===----------------------------------------------------------------------===//
util.global private @"__transpose_4096_4096_input" {noinline} = dense<1.0> : tensor<4096x4096xf32>
func.func @transpsoe_4096_4096() -> tensor<4096x4096xf32> {
%input_ptr = util.global.address @"__transpose_4096_4096_input" : !util.ptr<tensor<4096x4096xf32>>
%input = util.global.load.indirect %input_ptr : !util.ptr<tensor<4096x4096xf32>> -> tensor<4096x4096xf32>
%output = tensor.empty() : tensor<4096x4096xf32>
%result = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d1, d0)>, affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]}
ins(%input : tensor<4096x4096xf32>) outs(%output : tensor<4096x4096xf32>) {
^bb0(%arg1: f32, %arg2: f32):
linalg.yield %arg1 : f32
} -> tensor<4096x4096xf32>
return %result : tensor<4096x4096xf32>
}
util.global private @"__transpose_10_2048_1024_input" {noinline} = dense<1.0> : tensor<10x2048x1024xf32>
func.func @transpsoe_10_1024_2048() -> tensor<10x1024x2048xf32> {
%input_ptr = util.global.address @"__transpose_10_2048_1024_input" : !util.ptr<tensor<10x2048x1024xf32>>
%input = util.global.load.indirect %input_ptr : !util.ptr<tensor<10x2048x1024xf32>> -> tensor<10x2048x1024xf32>
%output = tensor.empty() : tensor<10x1024x2048xf32>
%result = linalg.generic {
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>],
iterator_types = ["parallel", "parallel", "parallel"]}
ins(%input : tensor<10x2048x1024xf32>) outs(%output : tensor<10x1024x2048xf32>) {
^bb0(%arg1: f32, %arg2: f32):
linalg.yield %arg1 : f32
} -> tensor<10x1024x2048xf32>
return %result : tensor<10x1024x2048xf32>
}
util.global private @"__transpose_10_2048_1024_lhs" {noinline} = dense<1.0> : tensor<10x2048x1024xf32>
util.global private @"__transpose_10_2048_1024_rhs" {noinline} = dense<1.0> : tensor<10x2048x1024xf32>
func.func @transpsoe_10_1024_2048_fusion() -> tensor<10x1024x2048xf32> {
%lhs_ptr = util.global.address @"__transpose_10_2048_1024_lhs" : !util.ptr<tensor<10x2048x1024xf32>>
%lhs = util.global.load.indirect %lhs_ptr : !util.ptr<tensor<10x2048x1024xf32>> -> tensor<10x2048x1024xf32>
%rhs_ptr = util.global.address @"__transpose_10_2048_1024_rhs" : !util.ptr<tensor<10x2048x1024xf32>>
%rhs = util.global.load.indirect %rhs_ptr : !util.ptr<tensor<10x2048x1024xf32>> -> tensor<10x2048x1024xf32>
%output = tensor.empty() : tensor<10x1024x2048xf32>
%result = linalg.generic {
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>],
iterator_types = ["parallel", "parallel", "parallel"]}
ins(%lhs, %rhs : tensor<10x2048x1024xf32>, tensor<10x2048x1024xf32>) outs(%output : tensor<10x1024x2048xf32>) {
^bb0(%arg1: f32, %arg2: f32, %arg3: f32):
%0 = arith.addf %arg1, %arg2 : f32
linalg.yield %0 : f32
} -> tensor<10x1024x2048xf32>
return %result : tensor<10x1024x2048xf32>
}
util.global private @"__transpose_10_2064_1024_input" {noinline} = dense<1.0> : tensor<10x2064x1024xf32>
func.func @transpsoe_10_1024_2064_unaligned() -> tensor<10x1024x2064xf32> {
%input_ptr = util.global.address @"__transpose_10_2064_1024_input" : !util.ptr<tensor<10x2064x1024xf32>>
%input = util.global.load.indirect %input_ptr : !util.ptr<tensor<10x2064x1024xf32>> -> tensor<10x2064x1024xf32>
%output = tensor.empty() : tensor<10x1024x2064xf32>
%result = linalg.generic {
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>],
iterator_types = ["parallel", "parallel", "parallel"]}
ins(%input : tensor<10x2064x1024xf32>) outs(%output : tensor<10x1024x2064xf32>) {
^bb0(%arg1: f32, %arg2: f32):
linalg.yield %arg1 : f32
} -> tensor<10x1024x2064xf32>
return %result : tensor<10x1024x2064xf32>
}