| # Copyright 2020 Google LLC |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # https://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| |
| # ***THIS FILE DOES NOT BUILD WITH BAZEL*** |
| # |
| # It is open sourced to enable Bazel->CMake conversion to maintain test coverage |
| # of our integration tests in open source while we figure out a long term plan |
| # for our integration testing. |
| |
| load( |
| "@iree//integrations/tensorflow/e2e:iree_e2e_cartesian_product_test_suite.bzl", |
| "iree_e2e_cartesian_product_test_suite", |
| ) |
| |
| package( |
| default_visibility = ["//visibility:public"], |
| features = ["layering_check"], |
| licenses = ["notice"], # Apache 2.0 |
| ) |
| |
| # @unused |
| DOC = """ |
| applications_test_manual is for manual testing of all keras vision models. |
| Test will run only manually with all parameters specified manually, for example: |
| bazel run -c opt integrations/tensorflow/e2e/keras/applications:applications_test_manual -- \ |
| --target_backends=tf,iree_vmla \ |
| --data=imagenet \ |
| --url=https://storage.googleapis.com/iree_models/ \ |
| --model=ResNet50 |
| |
| Command arguments description: |
| --target_backends: can be combination of these: tf,iree_vmla |
| --data: can be 'imagenet' or 'cifar10'. |
| imagenet - input image size (1, 224, 224, 3) |
| cifar10 - input image size (1, 32, 32, 3) - it is used for quick tests |
| and needs pretrained weights, we pretrained models: ResNet50, MobileNet, MobileNetV2 |
| --include_top: Whether or not to include the final (top) layers of the model. |
| --url: we need it only for cifar10 models to load weights from https://storage.googleapis.com/iree_models/ |
| imagenet pretrained weights url is specified by keras |
| --model: supports ResNet50, MobileNet, MobileNetV2, ResNet101, ResNet152, |
| ResNet50V2, ResNet101V2, ResNet152V2, VGG16, VGG19, Xception, |
| InceptionV3, InceptionResNetV2, DenseNet121, DenseNet169, |
| DenseNet201, NASNetMobile, NASNetLarge |
| All above models works with 'imagenet' data sets. |
| ResNet50, MobileNet, MobileNetV2 work with both 'imagenet' and 'cifar10' data sets. |
| """ |
| |
| [ |
| py_binary( |
| name = src.replace(".py", "_manual"), |
| srcs = [src], |
| main = src, |
| python_version = "PY3", |
| deps = [ |
| "//third_party/py/absl:app", |
| "//third_party/py/absl/flags", |
| "//third_party/py/iree:pylib_tf_support", |
| "//third_party/py/numpy", |
| "//third_party/py/tensorflow", |
| "//util/debuginfo:signalsafe_addr2line_installer", |
| ], |
| ) |
| for src in glob(["*_test.py"]) |
| ] |
| |
| KERAS_APPLICATIONS_MODELS = [ |
| "DenseNet121", |
| "DenseNet169", |
| "DenseNet201", |
| "EfficientNetB0", |
| "EfficientNetB1", |
| "EfficientNetB2", |
| "EfficientNetB3", |
| "EfficientNetB4", |
| "EfficientNetB5", |
| "EfficientNetB6", |
| "EfficientNetB7", |
| "InceptionResNetV2", |
| "InceptionV3", |
| "MobileNet", |
| "MobileNetV2", |
| "MobileNetV3Large", |
| "MobileNetV3Small", |
| "NASNetLarge", |
| "NASNetMobile", |
| "ResNet101", |
| "ResNet101V2", |
| "ResNet152", |
| "ResNet152V2", |
| "ResNet50", |
| "ResNet50V2", |
| "VGG16", |
| "VGG19", |
| "Xception", |
| ] |
| |
| iree_e2e_cartesian_product_test_suite( |
| name = "large_cifar10_tests", |
| size = "large", |
| failing_configurations = [ |
| # Frequently OOMs |
| { |
| "target_backends": "tflite", |
| "model": "VGG19", |
| }, |
| ], |
| matrix = { |
| "src": "applications_test.py", |
| "reference_backend": "tf", |
| "data": "cifar10", |
| "model": [ |
| # All models with runtime shorter than ResNet50. |
| "MobileNet", # Max: Vulkan 61.0s |
| "MobileNetV2", # Max: LLVM 96.3s |
| "ResNet50", # Max: LLVM 145.6s |
| "VGG16", # Max: LLVM 89.5s |
| "VGG19", # Max: LLVM 94.7s |
| ], |
| "target_backends": [ |
| "tf", |
| "tflite", |
| "iree_vmla", |
| "iree_llvmaot", |
| "iree_vulkan", |
| ], |
| }, |
| tags = ["manual"], |
| deps = [ |
| "//third_party/py/absl:app", |
| "//third_party/py/absl/flags", |
| "//third_party/py/iree:pylib_tf_support", |
| "//third_party/py/numpy", |
| "//third_party/py/tensorflow", |
| "//util/debuginfo:signalsafe_addr2line_installer", |
| ], |
| ) |
| |
| iree_e2e_cartesian_product_test_suite( |
| name = "enormous_cifar10_tests", |
| size = "enormous", |
| matrix = { |
| "src": "applications_test.py", |
| "reference_backend": "tf", |
| "data": "cifar10", |
| "model": [ |
| "DenseNet121", |
| "DenseNet169", |
| "DenseNet201", |
| "NASNetLarge", |
| "NASNetMobile", |
| "ResNet50V2", |
| "ResNet101", |
| "ResNet101V2", |
| "ResNet152", |
| "ResNet152V2", |
| ], |
| "target_backends": [ |
| "tf", |
| "tflite", |
| "iree_vmla", |
| "iree_llvmaot", |
| "iree_vulkan", |
| ], |
| }, |
| tags = [ |
| "guitar", |
| "manual", |
| "nokokoro", |
| "notap", |
| ], |
| deps = [ |
| "//third_party/py/absl:app", |
| "//third_party/py/absl/flags", |
| "//third_party/py/iree:pylib_tf_support", |
| "//third_party/py/numpy", |
| "//third_party/py/tensorflow", |
| "//util/debuginfo:signalsafe_addr2line_installer", |
| ], |
| ) |
| |
| # 'non_hermetic' tests use real model weights to test numerical correctness. |
| iree_e2e_cartesian_product_test_suite( |
| name = "cifar10_non_hermetic_tests", |
| size = "large", |
| matrix = { |
| "src": "applications_test.py", |
| "reference_backend": "tf", |
| "data": "cifar10", |
| "url": "https://storage.googleapis.com/iree_models/", |
| "use_external_weights": True, |
| "model": [ |
| "MobileNet", |
| "MobileNetV2", |
| "ResNet50", |
| ], |
| "target_backends": [ |
| "tf", |
| "tflite", |
| "iree_vmla", |
| "iree_llvmaot", |
| "iree_vulkan", |
| ], |
| }, |
| tags = [ |
| "external", |
| "guitar", |
| "manual", |
| "no-remote", |
| "nokokoro", |
| "notap", |
| ], |
| deps = [ |
| "//third_party/py/absl:app", |
| "//third_party/py/absl/flags", |
| "//third_party/py/iree:pylib_tf_support", |
| "//third_party/py/numpy", |
| "//third_party/py/tensorflow", |
| "//util/debuginfo:signalsafe_addr2line_installer", |
| ], |
| ) |
| |
| # 'non_hermetic' tests use real model weights to test numerical correctness. |
| iree_e2e_cartesian_product_test_suite( |
| name = "imagenet_non_hermetic_tests", |
| size = "enormous", |
| failing_configurations = [ |
| # TODO(b/186579218): Fix linalg-on-tensors failures in these. |
| { |
| "target_backends": [ |
| "iree_llvmaot", |
| "iree_vulkan", |
| ], |
| "model": [ |
| "InceptionResNetV2", |
| "InceptionV3", |
| "NASNetLarge", |
| "NASNetMobile", |
| "ResNet152V2", |
| ], |
| }, |
| ], |
| matrix = { |
| "src": "applications_test.py", |
| "reference_backend": "tf", |
| "data": "imagenet", |
| "use_external_weights": True, |
| "model": KERAS_APPLICATIONS_MODELS, |
| "target_backends": [ |
| "tf", |
| "tflite", |
| "iree_vmla", |
| "iree_llvmaot", |
| "iree_vulkan", |
| ], |
| }, |
| tags = [ |
| "external", |
| "guitar", |
| "manual", |
| "nokokoro", |
| "notap", |
| ], |
| deps = [ |
| "//third_party/py/absl:app", |
| "//third_party/py/absl/flags", |
| "//third_party/py/iree:pylib_tf_support", |
| "//third_party/py/numpy", |
| "//third_party/py/tensorflow", |
| "//util/debuginfo:signalsafe_addr2line_installer", |
| ], |
| ) |
| |
| # It is used to produce weights for keras vision models with input image size |
| # 32x32. These models are not optimized for accuracy or latency (they are for |
| # debugging only). They have the same neural net topology with keras vision |
| # models trained on imagenet data sets |
| py_binary( |
| name = "train_vision_models_on_cifar", |
| srcs = ["train_vision_models_on_cifar.py"], |
| python_version = "PY3", |
| srcs_version = "PY2AND3", |
| deps = [ |
| "//third_party/py/absl:app", |
| "//third_party/py/absl/flags", |
| "//third_party/py/iree:pylib_tf_support", |
| "//third_party/py/numpy", |
| "//third_party/py/tensorflow", |
| "//util/debuginfo:signalsafe_addr2line_installer", |
| ], |
| ) |