| // Copyright 2020 Google LLC |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // clang-format off |
| |
| // NOLINTNEXTLINE |
| // TODO(thomasraoux): Set the right path to vulkan wrapper shared library. The |
| // test won't run until this is done. |
| // RUN: test-simple-jit-vulkan -vulkan-wrapper=$(dirname %s)/../../../../llvm/llvm-project/mlir/tools/libvulkan-runtime-wrappers.so 2>&1 | IreeFileCheck %s |
| |
| // clang-format on |
| |
| #include <string> |
| |
| #include "experimental/ModelBuilder/ModelBuilder.h" |
| #include "experimental/ModelBuilder/ModelRunner.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/InitLLVM.h" |
| #include "mlir/Dialect/SPIRV/TargetAndABI.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/MLIRContext.h" |
| #include "mlir/IR/OperationSupport.h" |
| #include "mlir/Parser.h" |
| #include "mlir/ExecutionEngine/RunnerUtils.h" |
| #include "iree/base/initializer.h" |
| |
| static llvm::cl::opt<std::string> vulkanWrapper( |
| "vulkan-wrapper", llvm::cl::desc("Vulkan wrapper library"), |
| llvm::cl::value_desc("filename"), llvm::cl::init("-")); |
| |
| using namespace mlir; // NOLINT |
| |
| template <unsigned vecSize> |
| void testVectorAdd1d() { |
| MLIRContext context; |
| ModelBuilder modelBuilder; |
| constexpr int workgroupSize = 32; |
| auto typeA = modelBuilder.getMemRefType(vecSize, modelBuilder.f32); |
| auto typeB = modelBuilder.getMemRefType(vecSize, modelBuilder.f32); |
| auto typeC = modelBuilder.getMemRefType(vecSize, modelBuilder.f32); |
| gpu::GPUFuncOp kernelFunc; |
| { |
| // create the GPU module. |
| auto kernelModule = modelBuilder.makeGPUModule("kernels"); |
| // create kernel |
| kernelFunc = modelBuilder.makeGPUKernel("kernel_add", kernelModule, |
| {workgroupSize, 1, 1}, |
| {typeA, typeB, typeC}); |
| OpBuilder b(&kernelFunc.body()); |
| ScopedContext scope(b, kernelFunc.getLoc()); |
| |
| StdIndexedValue A(kernelFunc.getArgument(0)), B(kernelFunc.getArgument(1)), |
| C(kernelFunc.getArgument(2)); |
| auto ThreadIndex = b.create<gpu::ThreadIdOp>( |
| modelBuilder.loc, b.getIndexType(), b.getStringAttr("x")); |
| auto BlockIndex = b.create<gpu::BlockIdOp>( |
| modelBuilder.loc, b.getIndexType(), b.getStringAttr("x")); |
| auto GroupSize = b.create<gpu::BlockDimOp>( |
| modelBuilder.loc, b.getIndexType(), b.getStringAttr("x")); |
| Value Index = b.create<AddIOp>( |
| modelBuilder.loc, ThreadIndex, |
| b.create<MulIOp>(modelBuilder.loc, BlockIndex, GroupSize)); |
| C(Index) = A(Index) + B(Index); |
| b.create<gpu::ReturnOp>(kernelFunc.getLoc()); |
| } |
| const std::string funcName("add_dispatch"); |
| { |
| // Add host side code, simple dispatch: |
| auto f = |
| modelBuilder.makeFunction(funcName, {}, {typeA, typeB, typeC}, |
| MLIRFuncOpConfig().setEmitCInterface(true)); |
| OpBuilder b(&f.getBody()); |
| ScopedContext scope(b, f.getLoc()); |
| auto wgx = std_constant_index(workgroupSize); |
| auto one = std_constant_index(1); |
| auto dispatchSizeX = std_constant_index(vecSize / workgroupSize); |
| assert(vecSize % workgroupSize == 0); |
| b.create<gpu::LaunchFuncOp>( |
| f.getLoc(), kernelFunc, gpu::KernelDim3{dispatchSizeX, one, one}, |
| gpu::KernelDim3{wgx, one, one}, |
| ValueRange({f.getArgument(0), f.getArgument(1), f.getArgument(2)})); |
| std_ret(); |
| } |
| |
| // 2. Compile the function, pass in runtime support library |
| // to the execution engine for vector.print. |
| ModelRunner runner(modelBuilder.getModuleRef(), |
| ModelRunner::Target::GPUTarget); |
| runner.compile(CompilationOptions(), {vulkanWrapper}); |
| |
| // 3. Allocate data within data structures that interoperate with the MLIR ABI |
| // conventions used by codegen. |
| auto oneInit = [](unsigned idx, float *ptr) { ptr[idx] = 1.0f; }; |
| auto incInit = [](unsigned idx, float *ptr) { ptr[idx] = 1.0f + idx; }; |
| auto zeroInit = [](unsigned idx, float *ptr) { ptr[idx] = 0.0f; }; |
| auto A = makeInitializedStridedMemRefDescriptor<float, 1>({vecSize}, oneInit); |
| auto B = makeInitializedStridedMemRefDescriptor<float, 1>({vecSize}, incInit); |
| auto C = |
| makeInitializedStridedMemRefDescriptor<float, 1>({vecSize}, zeroInit); |
| |
| // 4. Call the funcOp named `funcName`. |
| auto err = runner.invoke(funcName, A, B, C); |
| if (err) llvm_unreachable("Error running function."); |
| |
| // 5. Print out the output buffer. |
| ::impl::printMemRef(*C); |
| } |
| |
| int main(int argc, char **argv) { |
| iree::Initializer::RunInitializers(); |
| // Allow LLVM setup through command line and parse the |
| // test specific option for a runtime support library. |
| llvm::InitLLVM y(argc, argv); |
| llvm::cl::ParseCommandLineOptions(argc, argv, "TestSimpleJITVulkan\n"); |
| // clang-format off |
| // CHECK: [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
| // CHECK: 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, |
| // CHECK: 31, 32, 33] |
| testVectorAdd1d<32>(); |
| // CHECK: [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
| // CHECK: 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, |
| // CHECK: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, |
| // CHECK: 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, |
| // CHECK: 59, 60, 61, 62, 63, 64, 65] |
| testVectorAdd1d<64>(); |
| } |