| |
| // Preprocessing with generalized packing. |
| // |
| // RUN: iree-opt %s --iree-transform-dialect-interpreter --transform-dialect-drop-schedule | \ |
| // RUN: FileCheck %s |
| |
| !a_tensor_t = tensor<1234x567xf32> |
| !at_tensor_t = tensor<567x1234xf32> |
| !b_tensor_t = tensor<567x890xf32> |
| !bt_tensor_t = tensor<890x567xf32> |
| !c_tensor_t = tensor<1234x890xf32> |
| !ct_tensor_t = tensor<890x1234xf32> |
| |
| // CHECK-DAG: #[[$map_lhs:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d3, d5)> |
| // CHECK-DAG: #[[$map_rhs:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d1, d4, d5)> |
| // CHECK-DAG: #[[$map_res:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d3, d4)> |
| // CHECK-DAG: #[[$map_tlhs:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d0, d3, d5)> |
| // CHECK-DAG: #[[$map_trhs:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d2, d4, d5)> |
| // CHECK-DAG: #[[$map_tres:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d0, d3, d4)> |
| |
| // CHECK-LABEL: func.func @matmul_nnn |
| func.func @matmul_nnn(%arg0: !a_tensor_t, %arg2: !c_tensor_t) -> !c_tensor_t { |
| %c0 = arith.constant dense<0.1> : !b_tensor_t |
| |
| // CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 32] |
| // CHECK: tensor.pack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [16, 32] |
| // CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 16] |
| // CHECK: linalg.generic |
| // CHECK-SAME: indexing_maps = [#[[$map_lhs]], #[[$map_rhs]], #[[$map_res]]] |
| // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel", "reduction"]} |
| // CHECK-SAME: ins(%{{.*}} : tensor<155x18x8x32xf32>, tensor<18x56x16x32xf32>) |
| // CHECK-SAME: outs(%{{.*}} : tensor<155x56x8x16xf32>) |
| // CHECK: tensor.unpack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 16] |
| %0 = linalg.matmul |
| ins(%arg0, %c0: !a_tensor_t, !b_tensor_t) |
| outs(%arg2: !c_tensor_t) -> !c_tensor_t |
| return %0 : !c_tensor_t |
| } |
| |
| #matmul_tnn_trait = { |
| indexing_maps = [ |
| affine_map<(m, n, k) -> (k, m)>, |
| affine_map<(m, n, k) -> (k, n)>, |
| affine_map<(m, n, k) -> (m, n)> |
| ], |
| iterator_types = ["parallel", "parallel", "reduction"] |
| } |
| |
| // CHECK-LABEL: func.func @matmul_tnn |
| func.func @matmul_tnn(%arg0: !at_tensor_t, %arg2: !c_tensor_t) -> !c_tensor_t { |
| %c0 = arith.constant dense<0.1> : !b_tensor_t |
| |
| // CHECK: tensor.pack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [8, 32] |
| // CHECK: tensor.pack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [16, 32] |
| // CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 16] |
| // CHECK: linalg.generic |
| // CHECK-SAME: indexing_maps = [#[[$map_tlhs]], #[[$map_rhs]], #[[$map_res]]] |
| // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel", "reduction"]} |
| // CHECK-SAME: ins(%{{.*}} : tensor<18x155x8x32xf32>, tensor<18x56x16x32xf32>) |
| // CHECK-SAME: outs(%{{.*}} : tensor<155x56x8x16xf32>) |
| // CHECK: tensor.unpack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 16] |
| %0 = linalg.generic #matmul_tnn_trait |
| ins(%arg0, %c0: !at_tensor_t, !b_tensor_t) |
| outs(%arg2: !c_tensor_t) { |
| ^bb(%a: f32, %b: f32, %c: f32) : |
| %d = arith.mulf %a, %b: f32 |
| %e = arith.addf %c, %d: f32 |
| linalg.yield %e : f32 |
| } -> !c_tensor_t |
| return %0 : !c_tensor_t |
| } |
| |
| #matmul_ntn_trait = { |
| indexing_maps = [ |
| affine_map<(m, n, k) -> (m, k)>, |
| affine_map<(m, n, k) -> (n, k)>, |
| affine_map<(m, n, k) -> (m, n)> |
| ], |
| iterator_types = ["parallel", "parallel", "reduction"] |
| } |
| |
| // CHECK-LABEL: func.func @matmul_ntn |
| func.func @matmul_ntn(%arg0: !a_tensor_t, %arg2: !c_tensor_t) -> !c_tensor_t { |
| %c0 = arith.constant dense<0.1> : !bt_tensor_t |
| |
| // CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 32] |
| // CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [16, 32] |
| // CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 16] |
| // CHECK: linalg.generic |
| // CHECK-SAME: indexing_maps = [#[[$map_lhs]], #[[$map_trhs]], #[[$map_res]]] |
| // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel", "reduction"]} |
| // CHECK-SAME: ins(%{{.*}} : tensor<155x18x8x32xf32>, tensor<56x18x16x32xf32>) |
| // CHECK-SAME: outs(%{{.*}} : tensor<155x56x8x16xf32>) |
| // CHECK: tensor.unpack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 16] |
| %0 = linalg.generic #matmul_ntn_trait |
| ins(%arg0, %c0: !a_tensor_t, !bt_tensor_t) |
| outs(%arg2: !c_tensor_t) { |
| ^bb(%a: f32, %b: f32, %c: f32) : |
| %d = arith.mulf %a, %b: f32 |
| %e = arith.addf %c, %d: f32 |
| linalg.yield %e : f32 |
| } -> !c_tensor_t |
| return %0 : !c_tensor_t |
| } |
| |
| #matmul_nnt_trait = { |
| indexing_maps = [ |
| affine_map<(m, n, k) -> (m, k)>, |
| affine_map<(m, n, k) -> (k, n)>, |
| affine_map<(m, n, k) -> (n, m)> |
| ], |
| iterator_types = ["parallel", "parallel", "reduction"] |
| } |
| |
| // CHECK-LABEL: func.func @matmul_nnt |
| func.func @matmul_nnt(%arg0: !a_tensor_t, %arg2: !ct_tensor_t) -> !ct_tensor_t { |
| %c0 = arith.constant dense<0.1> : !b_tensor_t |
| |
| // CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 32] |
| // CHECK: tensor.pack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [16, 32] |
| // CHECK: tensor.pack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [8, 16] |
| // CHECK: linalg.generic |
| // CHECK-SAME: indexing_maps = [#[[$map_lhs]], #[[$map_rhs]], #[[$map_tres]]] |
| // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel", "reduction"]} |
| // CHECK-SAME: ins(%{{.*}} : tensor<155x18x8x32xf32>, tensor<18x56x16x32xf32>) |
| // CHECK-SAME: outs(%{{.*}} : tensor<56x155x8x16xf32>) |
| // CHECK: tensor.unpack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [8, 16] |
| %0 = linalg.generic #matmul_nnt_trait |
| ins(%arg0, %c0: !a_tensor_t, !b_tensor_t) |
| outs(%arg2: !ct_tensor_t) { |
| ^bb(%a: f32, %b: f32, %c: f32) : |
| %d = arith.mulf %a, %b: f32 |
| %e = arith.addf %c, %d: f32 |
| linalg.yield %e : f32 |
| } -> !ct_tensor_t |
| return %0 : !ct_tensor_t |
| } |
| |
| transform.sequence failures(propagate) { |
| ^bb1(%module_op: !transform.any_op): |
| %matmul = transform.structured.match interface{LinalgOp} in %module_op |
| : (!transform.any_op) -> (!transform.any_op) |
| |
| // Generalized packing rewrite extracts a gemm from any linalg op that contains |
| // one. This acts as a powerful normalization step: after this point, we have a |
| // gemm (i.e. 3-D contraction with (m,n,k)=(8,16,32) ) on the 3 most minor |
| // dimensions. |
| transform.structured.pack_greedily %matmul |
| matmul_packed_sizes = [8, 16, 32] matmul_inner_dims_order = [0, 1, 2] |
| : (!transform.any_op) -> !transform.op<"linalg.generic"> |
| } |