blob: 2ab912fdf0808954865a15cc13be7e1a06407a83 [file] [log] [blame]
// Preprocessing with generalized packing.
//
// RUN: iree-opt %s --iree-transform-dialect-interpreter --transform-dialect-drop-schedule | \
// RUN: FileCheck %s
!a_tensor_t = tensor<1234x567xf32>
!at_tensor_t = tensor<567x1234xf32>
!b_tensor_t = tensor<567x890xf32>
!bt_tensor_t = tensor<890x567xf32>
!c_tensor_t = tensor<1234x890xf32>
!ct_tensor_t = tensor<890x1234xf32>
// CHECK-DAG: #[[$map_lhs:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d3, d5)>
// CHECK-DAG: #[[$map_rhs:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d1, d4, d5)>
// CHECK-DAG: #[[$map_res:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d3, d4)>
// CHECK-DAG: #[[$map_tlhs:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d0, d3, d5)>
// CHECK-DAG: #[[$map_trhs:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d2, d4, d5)>
// CHECK-DAG: #[[$map_tres:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d0, d3, d4)>
// CHECK-LABEL: func.func @matmul_nnn
func.func @matmul_nnn(%arg0: !a_tensor_t, %arg2: !c_tensor_t) -> !c_tensor_t {
%c0 = arith.constant dense<0.1> : !b_tensor_t
// CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 32]
// CHECK: tensor.pack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [16, 32]
// CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 16]
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[$map_lhs]], #[[$map_rhs]], #[[$map_res]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel", "reduction"]}
// CHECK-SAME: ins(%{{.*}} : tensor<155x18x8x32xf32>, tensor<18x56x16x32xf32>)
// CHECK-SAME: outs(%{{.*}} : tensor<155x56x8x16xf32>)
// CHECK: tensor.unpack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 16]
%0 = linalg.matmul
ins(%arg0, %c0: !a_tensor_t, !b_tensor_t)
outs(%arg2: !c_tensor_t) -> !c_tensor_t
return %0 : !c_tensor_t
}
#matmul_tnn_trait = {
indexing_maps = [
affine_map<(m, n, k) -> (k, m)>,
affine_map<(m, n, k) -> (k, n)>,
affine_map<(m, n, k) -> (m, n)>
],
iterator_types = ["parallel", "parallel", "reduction"]
}
// CHECK-LABEL: func.func @matmul_tnn
func.func @matmul_tnn(%arg0: !at_tensor_t, %arg2: !c_tensor_t) -> !c_tensor_t {
%c0 = arith.constant dense<0.1> : !b_tensor_t
// CHECK: tensor.pack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [8, 32]
// CHECK: tensor.pack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [16, 32]
// CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 16]
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[$map_tlhs]], #[[$map_rhs]], #[[$map_res]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel", "reduction"]}
// CHECK-SAME: ins(%{{.*}} : tensor<18x155x8x32xf32>, tensor<18x56x16x32xf32>)
// CHECK-SAME: outs(%{{.*}} : tensor<155x56x8x16xf32>)
// CHECK: tensor.unpack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 16]
%0 = linalg.generic #matmul_tnn_trait
ins(%arg0, %c0: !at_tensor_t, !b_tensor_t)
outs(%arg2: !c_tensor_t) {
^bb(%a: f32, %b: f32, %c: f32) :
%d = arith.mulf %a, %b: f32
%e = arith.addf %c, %d: f32
linalg.yield %e : f32
} -> !c_tensor_t
return %0 : !c_tensor_t
}
#matmul_ntn_trait = {
indexing_maps = [
affine_map<(m, n, k) -> (m, k)>,
affine_map<(m, n, k) -> (n, k)>,
affine_map<(m, n, k) -> (m, n)>
],
iterator_types = ["parallel", "parallel", "reduction"]
}
// CHECK-LABEL: func.func @matmul_ntn
func.func @matmul_ntn(%arg0: !a_tensor_t, %arg2: !c_tensor_t) -> !c_tensor_t {
%c0 = arith.constant dense<0.1> : !bt_tensor_t
// CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 32]
// CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [16, 32]
// CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 16]
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[$map_lhs]], #[[$map_trhs]], #[[$map_res]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel", "reduction"]}
// CHECK-SAME: ins(%{{.*}} : tensor<155x18x8x32xf32>, tensor<56x18x16x32xf32>)
// CHECK-SAME: outs(%{{.*}} : tensor<155x56x8x16xf32>)
// CHECK: tensor.unpack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 16]
%0 = linalg.generic #matmul_ntn_trait
ins(%arg0, %c0: !a_tensor_t, !bt_tensor_t)
outs(%arg2: !c_tensor_t) {
^bb(%a: f32, %b: f32, %c: f32) :
%d = arith.mulf %a, %b: f32
%e = arith.addf %c, %d: f32
linalg.yield %e : f32
} -> !c_tensor_t
return %0 : !c_tensor_t
}
#matmul_nnt_trait = {
indexing_maps = [
affine_map<(m, n, k) -> (m, k)>,
affine_map<(m, n, k) -> (k, n)>,
affine_map<(m, n, k) -> (n, m)>
],
iterator_types = ["parallel", "parallel", "reduction"]
}
// CHECK-LABEL: func.func @matmul_nnt
func.func @matmul_nnt(%arg0: !a_tensor_t, %arg2: !ct_tensor_t) -> !ct_tensor_t {
%c0 = arith.constant dense<0.1> : !b_tensor_t
// CHECK: tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [8, 32]
// CHECK: tensor.pack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [16, 32]
// CHECK: tensor.pack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [8, 16]
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[$map_lhs]], #[[$map_rhs]], #[[$map_tres]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel", "reduction"]}
// CHECK-SAME: ins(%{{.*}} : tensor<155x18x8x32xf32>, tensor<18x56x16x32xf32>)
// CHECK-SAME: outs(%{{.*}} : tensor<56x155x8x16xf32>)
// CHECK: tensor.unpack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [8, 16]
%0 = linalg.generic #matmul_nnt_trait
ins(%arg0, %c0: !a_tensor_t, !b_tensor_t)
outs(%arg2: !ct_tensor_t) {
^bb(%a: f32, %b: f32, %c: f32) :
%d = arith.mulf %a, %b: f32
%e = arith.addf %c, %d: f32
linalg.yield %e : f32
} -> !ct_tensor_t
return %0 : !ct_tensor_t
}
transform.sequence failures(propagate) {
^bb1(%module_op: !transform.any_op):
%matmul = transform.structured.match interface{LinalgOp} in %module_op
: (!transform.any_op) -> (!transform.any_op)
// Generalized packing rewrite extracts a gemm from any linalg op that contains
// one. This acts as a powerful normalization step: after this point, we have a
// gemm (i.e. 3-D contraction with (m,n,k)=(8,16,32) ) on the 3 most minor
// dimensions.
transform.structured.pack_greedily %matmul
matmul_packed_sizes = [8, 16, 32] matmul_inner_dims_order = [0, 1, 2]
: (!transform.any_op) -> !transform.op<"linalg.generic">
}