| // Copyright 2019 Google LLC |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef IREE_BASE_MEMORY_H_ |
| #define IREE_BASE_MEMORY_H_ |
| |
| #include <memory> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "absl/types/span.h" |
| |
| namespace iree { |
| |
| // reinterpret_cast for Spans, preserving byte size. |
| template <typename T, typename U> |
| constexpr absl::Span<const T> ReinterpretSpan(absl::Span<const U> value) { |
| return absl::MakeSpan(reinterpret_cast<const T*>(value.data()), |
| (value.size() * sizeof(U)) / sizeof(T)); |
| } |
| template <typename T, typename U> |
| constexpr absl::Span<T> ReinterpretSpan(absl::Span<U> value) { |
| return absl::MakeSpan(reinterpret_cast<T*>(value.data()), |
| (value.size() * sizeof(U)) / sizeof(T)); |
| } |
| |
| // Cast a span of std::unique_ptr to a span of raw pointers. |
| template <typename T> |
| inline absl::Span<T*> RawPtrSpan(absl::Span<std::unique_ptr<T>> value) { |
| return absl::MakeSpan(reinterpret_cast<T**>(value.data()), value.size()); |
| } |
| |
| // A helper wrapper that moves the wrapped object on copy. |
| // This is particularly handy for capturing unique_ptrs in lambdas. |
| // Usage example: |
| // |
| // std::unique_ptr<Foo> foo_ptr(new Foo()); |
| // move_on_copy<std::unique_ptr<Foo>> foo(std::move(foo_ptr)); |
| // auto some_lambda = [bar]() { ... } |
| // |
| template <typename T> |
| struct move_on_copy { |
| explicit move_on_copy(T&& t) : value(std::move(t)) {} |
| |
| move_on_copy(move_on_copy const& other) : value(std::move(other.value)) {} |
| |
| move_on_copy(move_on_copy&& other) : value(std::move(other.value)) {} |
| |
| move_on_copy& operator=(move_on_copy const& other) { |
| value = std::move(other.value); |
| return *this; |
| } |
| |
| move_on_copy& operator=(move_on_copy&& other) { |
| value = std::move(other.value); |
| return *this; |
| } |
| |
| mutable T value; |
| }; |
| |
| // Utility to aid in moving ref_ptr's into closures. |
| // |
| // Usage: |
| // auto baton = MoveToLambda(my_ref); |
| // DoSomething([baton] () { baton.value; }); |
| #define IreeMoveToLambda(p) ::iree::move_on_copy<decltype(p)>(std::move(p)) |
| |
| // TODO(benvanik): replace with an absl version when it exists. |
| // A move-only RAII object that calls a stored cleanup functor when |
| // destroyed. Cleanup<F> is the return type of iree::MakeCleanup(F). |
| template <typename F> |
| class Cleanup { |
| public: |
| Cleanup() : released_(true), f_() {} |
| template <typename G> |
| explicit Cleanup(G&& f) // NOLINT |
| : f_(std::forward<G>(f)) {} // NOLINT(build/c++11) |
| Cleanup(Cleanup&& src) // NOLINT |
| : released_(src.is_released()), f_(src.release()) {} |
| |
| // Implicitly move-constructible from any compatible Cleanup<G>. |
| // The source will be released as if src.release() were called. |
| // A moved-from Cleanup can be safely destroyed or reassigned. |
| template <typename G> |
| Cleanup(Cleanup<G>&& src) // NOLINT |
| : released_(src.is_released()), f_(src.release()) {} |
| |
| // Assignment to a Cleanup object behaves like destroying it |
| // and making a new one in its place, analogous to unique_ptr |
| // semantics. |
| Cleanup& operator=(Cleanup&& src) { // NOLINT |
| if (!released_) std::move(f_)(); |
| released_ = src.released_; |
| f_ = src.release(); |
| return *this; |
| } |
| |
| ~Cleanup() { |
| if (!released_) std::move(f_)(); |
| } |
| |
| // Releases the cleanup function instead of running it. |
| // Hint: use c.release()() to run early. |
| F release() { |
| released_ = true; |
| return std::move(f_); |
| } |
| |
| bool is_released() const { return released_; } |
| |
| private: |
| static_assert(!std::is_reference<F>::value, "F must not be a reference"); |
| |
| bool released_ = false; |
| F f_; |
| }; |
| |
| // MakeCleanup(f) returns an RAII cleanup object that calls 'f' in its |
| // destructor. The easiest way to use MakeCleanup is with a lambda argument, |
| // capturing the return value in an 'auto' local variable. Most users will not |
| // need more sophisticated syntax than that. |
| // |
| // Example: |
| // void func() { |
| // FILE* fp = fopen("data.txt", "r"); |
| // if (fp == nullptr) return; |
| // auto fp_cleaner = MakeCleanup([fp] { fclose(fp); }); |
| // // No matter what, fclose(fp) will happen. |
| // } |
| // |
| // You can call 'release()' on a Cleanup object to cancel the cleanup. |
| template <int&... ExplicitParameterBarrier, typename F, |
| typename DecayF = typename std::decay<F>::type> |
| ABSL_MUST_USE_RESULT Cleanup<DecayF> MakeCleanup(F&& f) { |
| return Cleanup<DecayF>(std::forward<F>(f)); |
| } |
| |
| } // namespace iree |
| |
| // If you see these macros being used it means that the code between is not |
| // really under our control and not a leak we would be able to prevent. |
| #if defined(__has_feature) |
| #if __has_feature(address_sanitizer) |
| #include <sanitizer/lsan_interface.h> |
| #define IREE_DISABLE_LEAK_CHECKS() __lsan_disable() |
| #define IREE_ENABLE_LEAK_CHECKS() __lsan_enable() |
| #else |
| #define IREE_DISABLE_LEAK_CHECKS() |
| #define IREE_ENABLE_LEAK_CHECKS() |
| #endif // __has_feature(address_sanitizer) |
| #endif // __has_feature |
| |
| #endif // IREE_BASE_MEMORY_H_ |