| # Lint as: python3 |
| # Copyright 2019 Google LLC |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # https://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| |
| from absl import app |
| import numpy as np |
| from pyiree.tf.support import tf_test_utils |
| from pyiree.tf.support import tf_utils |
| import tensorflow.compat.v2 as tf |
| |
| |
| class ConvTransposeModule(tf.Module): |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([2, 2, 1, 1], tf.float32), |
| tf.TensorSpec([1, 2, 4, 1], tf.float32), |
| ]) |
| def conv2d_transpose_same(self, filt, img): |
| input_sizes = [1, 2, 4, 1] |
| strides = [1, 1, 1, 1] |
| padding = "SAME" |
| return tf.nn.conv2d_transpose(img, |
| filt, |
| input_sizes, |
| strides, |
| padding, |
| name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 4, 2, 3], tf.float32), |
| tf.TensorSpec([1, 1, 4, 3], tf.float32), |
| ]) |
| def conv2d_transpose_dilated_w(self, filt, img): |
| input_sizes = [1, 1, 10, 2] |
| strides = [1, 1, 2, 1] |
| padding = "VALID" |
| return tf.nn.conv2d_transpose(img, |
| filt, |
| input_sizes, |
| strides, |
| padding, |
| name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([4, 1, 2, 3], tf.float32), |
| tf.TensorSpec([1, 4, 1, 3], tf.float32), |
| ]) |
| def conv2d_transpose_dilated_h(self, filt, img): |
| input_sizes = [1, 10, 1, 2] |
| strides = [1, 2, 1, 1] |
| padding = "VALID" |
| return tf.nn.conv2d_transpose(img, |
| filt, |
| input_sizes, |
| strides, |
| padding, |
| name="result") |
| |
| |
| class ConvTransposeTest(tf_test_utils.TracedModuleTestCase): |
| |
| def __init__(self, *args, **kwargs): |
| super().__init__(*args, **kwargs) |
| self._modules = tf_test_utils.compile_tf_module(ConvTransposeModule) |
| |
| # yapf: disable |
| def test_transposed(self): |
| def transposed(module): |
| kernel = tf_utils.uniform([2, 2, 1, 1], dtype=np.float32) |
| img = tf_utils.uniform([1, 2, 4, 1], dtype=np.float32) |
| |
| module.conv2d_transpose_same(kernel, img) |
| self.compare_backends(transposed, self._modules) |
| |
| def test_transposed_dilated_w(self): |
| def transposed(module): |
| kernel = tf_utils.uniform([1, 4, 2, 3], dtype=np.float32) |
| img = tf_utils.uniform([1, 1, 4, 3], dtype=np.float32) |
| |
| module.conv2d_transpose_dilated_w(kernel, img) |
| self.compare_backends(transposed, self._modules) |
| |
| def test_transposed_dilated_h(self): |
| def transposed(module): |
| kernel = tf_utils.uniform([4, 1, 2, 3], dtype=np.float32) |
| img = tf_utils.uniform([1, 4, 1, 3], dtype=np.float32) |
| |
| module.conv2d_transpose_dilated_h(kernel, img) |
| self.compare_backends(transposed, self._modules) |
| # yapf: enable |
| |
| |
| def main(argv): |
| del argv # Unused |
| if hasattr(tf, 'enable_v2_behavior'): |
| tf.enable_v2_behavior() |
| tf.test.main() |
| |
| |
| if __name__ == '__main__': |
| app.run(main) |