blob: f62eab45f79915cc14c7c0def321d3e6ec0d6c54 [file] [log] [blame]
# Lint as: python3
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from absl import app
import numpy as np
from pyiree.tf.support import tf_test_utils
from pyiree.tf.support import tf_utils
import tensorflow.compat.v2 as tf
class ConvTransposeModule(tf.Module):
@tf.function(input_signature=[
tf.TensorSpec([2, 2, 1, 1], tf.float32),
tf.TensorSpec([1, 2, 4, 1], tf.float32),
])
def conv2d_transpose_same(self, filt, img):
input_sizes = [1, 2, 4, 1]
strides = [1, 1, 1, 1]
padding = "SAME"
return tf.nn.conv2d_transpose(img,
filt,
input_sizes,
strides,
padding,
name="result")
@tf.function(input_signature=[
tf.TensorSpec([1, 4, 2, 3], tf.float32),
tf.TensorSpec([1, 1, 4, 3], tf.float32),
])
def conv2d_transpose_dilated_w(self, filt, img):
input_sizes = [1, 1, 10, 2]
strides = [1, 1, 2, 1]
padding = "VALID"
return tf.nn.conv2d_transpose(img,
filt,
input_sizes,
strides,
padding,
name="result")
@tf.function(input_signature=[
tf.TensorSpec([4, 1, 2, 3], tf.float32),
tf.TensorSpec([1, 4, 1, 3], tf.float32),
])
def conv2d_transpose_dilated_h(self, filt, img):
input_sizes = [1, 10, 1, 2]
strides = [1, 2, 1, 1]
padding = "VALID"
return tf.nn.conv2d_transpose(img,
filt,
input_sizes,
strides,
padding,
name="result")
class ConvTransposeTest(tf_test_utils.TracedModuleTestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._modules = tf_test_utils.compile_tf_module(ConvTransposeModule)
# yapf: disable
def test_transposed(self):
def transposed(module):
kernel = tf_utils.uniform([2, 2, 1, 1], dtype=np.float32)
img = tf_utils.uniform([1, 2, 4, 1], dtype=np.float32)
module.conv2d_transpose_same(kernel, img)
self.compare_backends(transposed, self._modules)
def test_transposed_dilated_w(self):
def transposed(module):
kernel = tf_utils.uniform([1, 4, 2, 3], dtype=np.float32)
img = tf_utils.uniform([1, 1, 4, 3], dtype=np.float32)
module.conv2d_transpose_dilated_w(kernel, img)
self.compare_backends(transposed, self._modules)
def test_transposed_dilated_h(self):
def transposed(module):
kernel = tf_utils.uniform([4, 1, 2, 3], dtype=np.float32)
img = tf_utils.uniform([1, 4, 1, 3], dtype=np.float32)
module.conv2d_transpose_dilated_h(kernel, img)
self.compare_backends(transposed, self._modules)
# yapf: enable
def main(argv):
del argv # Unused
if hasattr(tf, 'enable_v2_behavior'):
tf.enable_v2_behavior()
tf.test.main()
if __name__ == '__main__':
app.run(main)