blob: bfec158d393f629269983897a6c7d540beff5a15 [file] [log] [blame]
// Source IR for the following. Skips dispatch formation to isolate testing to
// codegen.
//
// !A_size = tensor<16x5xf32>
// !B_size = tensor<5x16xf32>
// !C_size = tensor<16x16xf32>
// !O_size = tensor<16xf32>
//
// module {
// func.func @example_module(%A : !A_size, %B : !B_size, %C : !C_size) -> !O_size {
// %0 = linalg.add ins(%A, %A : !A_size, !A_size)
// outs(%A : !A_size) -> !A_size
// %1 = linalg.matmul ins(%0, %B : !A_size, !B_size)
// outs(%C : !C_size) -> !C_size
// %empty = tensor.empty() : !O_size
// %2 = linalg.reduce
// ins(%1 : !C_size)
// outs(%empty : !O_size)
// dimensions = [1]
// (%in: f32, %out: f32) {
// %3 = arith.addf %out, %in: f32
// linalg.yield %3: f32
// }
// return %2 : !O_size
// }
// }
#target = #iree_gpu.target<arch = "", features = "spirv:v1.3,cap:Shader", wgp = <
compute = fp32|int32, storage = b32, subgroup = none, dot = none, mma = [], subgroup_size_choices = [64, 64],
max_workgroup_sizes = [128, 128, 64], max_thread_count_per_workgroup = 128, max_workgroup_memory_bytes = 16384, max_workgroup_counts = [65535, 65535, 65535]>>
#pipeline_layout_0 = #hal.pipeline.layout<bindings = [
#hal.pipeline.binding<storage_buffer, ReadOnly>,
#hal.pipeline.binding<storage_buffer>
]>
#pipeline_layout_1 = #hal.pipeline.layout<bindings = [
#hal.pipeline.binding<storage_buffer, ReadOnly>,
#hal.pipeline.binding<storage_buffer, ReadOnly>,
#hal.pipeline.binding<storage_buffer>
]>
#pipeline_layout_2 = #hal.pipeline.layout<bindings = [
#hal.pipeline.binding<storage_buffer, ReadOnly>,
#hal.pipeline.binding<storage_buffer>
]>
module attributes {
hal.device.targets = [
#hal.device.target<"vulkan", [
#hal.executable.target<"vulkan-spirv", "vulkan-spirv-fb", {
iree.gpu.target = #target
}>
]> : !hal.device
]
} {
hal.executable private @example_module_dispatch_0 {
hal.executable.variant public @vulkan_spirv_fb target(<"vulkan-spirv", "vulkan-spirv-fb", {iree.gpu.target = #target}>) {
hal.executable.export public @example_module_dispatch_0_generic_80_f32 ordinal(0) layout(#pipeline_layout_0) {
^bb0(%arg0: !hal.device):
%x, %y, %z = flow.dispatch.workgroup_count_from_slice
hal.return %x, %y, %z : index, index, index
}
builtin.module {
func.func @example_module_dispatch_0_generic_80_f32() {
%c0 = arith.constant 0 : index
%0 = hal.interface.binding.subspan layout(#pipeline_layout_0) binding(0) alignment(64) offset(%c0) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<80xf32>>
%1 = hal.interface.binding.subspan layout(#pipeline_layout_0) binding(1) alignment(64) offset(%c0) : !flow.dispatch.tensor<writeonly:tensor<80xf32>>
%2 = flow.dispatch.tensor.load %0, offsets = [0], sizes = [80], strides = [1] : !flow.dispatch.tensor<readonly:tensor<80xf32>> -> tensor<80xf32>
%3 = tensor.empty() : tensor<80xf32>
%4 = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"]} ins(%2 : tensor<80xf32>) outs(%3 : tensor<80xf32>) {
^bb0(%in: f32, %out: f32):
%5 = arith.addf %in, %in : f32
linalg.yield %5 : f32
} -> tensor<80xf32>
flow.dispatch.tensor.store %4, %1, offsets = [0], sizes = [80], strides = [1] : tensor<80xf32> -> !flow.dispatch.tensor<writeonly:tensor<80xf32>>
return
}
}
}
}
hal.executable private @example_module_dispatch_1 {
hal.executable.variant public @vulkan_spirv_fb target(<"vulkan-spirv", "vulkan-spirv-fb", {iree.gpu.target = #target}>) {
hal.executable.export public @example_module_dispatch_1_matmul_16x16x5_f32 ordinal(0) layout(#pipeline_layout_1) {
^bb0(%arg0: !hal.device):
%x, %y, %z = flow.dispatch.workgroup_count_from_slice
hal.return %x, %y, %z : index, index, index
}
builtin.module {
func.func @example_module_dispatch_1_matmul_16x16x5_f32() {
%c0 = arith.constant 0 : index
%0 = hal.interface.binding.subspan layout(#pipeline_layout_1) binding(0) alignment(64) offset(%c0) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<16x5xf32>>
%1 = hal.interface.binding.subspan layout(#pipeline_layout_1) binding(1) alignment(64) offset(%c0) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<5x16xf32>>
%2 = hal.interface.binding.subspan layout(#pipeline_layout_1) binding(2) alignment(64) offset(%c0) : !flow.dispatch.tensor<readwrite:tensor<16x16xf32>>
%3 = flow.dispatch.tensor.load %0, offsets = [0, 0], sizes = [16, 5], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<16x5xf32>> -> tensor<16x5xf32>
%4 = flow.dispatch.tensor.load %1, offsets = [0, 0], sizes = [5, 16], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<5x16xf32>> -> tensor<5x16xf32>
%5 = flow.dispatch.tensor.load %2, offsets = [0, 0], sizes = [16, 16], strides = [1, 1] : !flow.dispatch.tensor<readwrite:tensor<16x16xf32>> -> tensor<16x16xf32>
%6 = linalg.matmul ins(%3, %4 : tensor<16x5xf32>, tensor<5x16xf32>) outs(%5 : tensor<16x16xf32>) -> tensor<16x16xf32>
flow.dispatch.tensor.store %6, %2, offsets = [0, 0], sizes = [16, 16], strides = [1, 1] : tensor<16x16xf32> -> !flow.dispatch.tensor<readwrite:tensor<16x16xf32>>
return
}
}
}
}
hal.executable private @example_module_dispatch_2 {
hal.executable.variant public @vulkan_spirv_fb target(<"vulkan-spirv", "vulkan-spirv-fb", {iree.gpu.target = #target}>) {
hal.executable.export public @example_module_dispatch_2_generic_16x16_f32 ordinal(0) layout(#pipeline_layout_2) {
^bb0(%arg0: !hal.device):
%x, %y, %z = flow.dispatch.workgroup_count_from_slice
hal.return %x, %y, %z : index, index, index
}
builtin.module {
func.func @example_module_dispatch_2_generic_16x16_f32() {
%c0 = arith.constant 0 : index
%0 = hal.interface.binding.subspan layout(#pipeline_layout_2) binding(0) alignment(64) offset(%c0) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<16x16xf32>>
%1 = hal.interface.binding.subspan layout(#pipeline_layout_2) binding(1) alignment(64) offset(%c0) : !flow.dispatch.tensor<writeonly:tensor<16xf32>>
%2 = flow.dispatch.tensor.load %0, offsets = [0, 0], sizes = [16, 16], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<16x16xf32>> -> tensor<16x16xf32>
%3 = tensor.empty() : tensor<16xf32>
%4 = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0)>], iterator_types = ["parallel", "reduction"]} ins(%2 : tensor<16x16xf32>) outs(%3 : tensor<16xf32>) {
^bb0(%in: f32, %out: f32):
%5 = arith.addf %out, %in : f32
linalg.yield %5 : f32
} -> tensor<16xf32>
flow.dispatch.tensor.store %4, %1, offsets = [0], sizes = [16], strides = [1] : tensor<16xf32> -> !flow.dispatch.tensor<writeonly:tensor<16xf32>>
return
}
}
}
}
}
/// We test first with threading off so that the printers are legible.
// RUN: iree-compile %s --iree-hal-target-backends=vulkan \
// RUN: --iree-codegen-transform-dialect-library=%p/transform_library.mlir@kernel_config \
// RUN: --compile-from=executable-sources \
// RUN: --compile-to=executable-targets \
// RUN: --mlir-disable-threading | \
// RUN: FileCheck %s --check-prefixes=CODEGEN-PRINTER
// CODEGEN-PRINTER: IR printer: Setting matmul strategy to custom_transform_strategy
// CODEGEN-PRINTER: translation_info = #iree_codegen.translation_info<pipeline = TransformDialectCodegen codegen_spec = @custom_transform_strategy>
// CODEGEN-PRINTER: IR printer: Setting reduce strategy to base vectorize top-level
// CODEGEN-PRINTER: translation_info = #iree_codegen.translation_info<pipeline = SPIRVBaseVectorize workgroup_size = [16, 1, 1]>
/// Then test with threading to make sure it runs
// RUN: iree-compile %s --iree-hal-target-backends=vulkan \
// RUN: --iree-codegen-transform-dialect-library=%p/transform_library.mlir@kernel_config \
// RUN: --compile-from=executable-sources \
// RUN: --compile-to=executable-targets \
// RUN: --mlir-disable-threading | \
// RUN: FileCheck %s --check-prefixes=CODEGEN
// CODEGEN: spirv.func @example_module_dispatch_0_generic_80_f32
// CODEGEN: spirv.func @example_module_dispatch_1_matmul_16x16x5_f32
// CODEGEN: spirv.func @example_module_dispatch_2_generic_16x16_f32