| // This example demonstrates calling dynamically imported functions in the |
| // runtime. Alternatively the functions can be embedded into the compiled IREE |
| // programs for hermetic deployment (see custom_dispatch/cpu/embedded/). |
| |
| // NOTE: this file is identical to system_example.mlir besides the lit config |
| // controlling the iree-run-module flag. |
| // TODO(benvanik): find a way to share the files (environment variables saying |
| // what types to run, etc). |
| |
| // RUN: iree-compile --iree-hal-target-backends=llvm-cpu %s | \ |
| // RUN: iree-run-module \ |
| // RUN: --device=local-sync \ |
| // RUN: --executable_plugin=$IREE_BINARY_DIR/samples/custom_dispatch/cpu/plugin/standalone_plugin.sos \ |
| // RUN: --module=- \ |
| // RUN: --function=mixed_invocation \ |
| // RUN: --input=8xf32=2 \ |
| // RUN: --input=8xf32=4 | \ |
| // RUN: FileCheck %s --check-prefix=CHECK-STANDALONE |
| |
| // CHECK-STANDALONE: EXEC @mixed_invocation |
| // CHECK-STANDALONE: 8xf32=12 12 12 12 12 12 12 12 |
| |
| module @example { |
| |
| // Executable containing exported shims and calls to external functions. |
| // Each executable can contain multiple exported functions and variants for |
| // different architectures or even devices. It's also possible to mix hand- |
| // authored functions with code generated ones even for the same functions |
| // such that code generation is used as a fallback when the hand-authored |
| // kernels aren't supported at runtime. |
| stream.executable private @executable { |
| stream.executable.export public @simple_mul workgroups(%workload: index) -> (index, index, index) { |
| // This host function is used to compute the XYZ workgroup count |
| // dispatched at runtime. It can query the %device for capabilities |
| // and limits (last-level cache sizes, etc). The other arguments are the |
| // values passed in the dispatch operation (usually things like root |
| // output op tensor dimensions and other abstract values). |
| %x = affine.apply affine_map<()[s0] -> (s0 ceildiv 64)>()[%workload] |
| %c1 = arith.constant 1 : index |
| stream.return %x, %c1, %c1 : index, index, index |
| } |
| |
| builtin.module { |
| // External function declaration using a user-chosen calling convention. |
| func.func private @simple_mul_workgroup( |
| %binding0: memref<f32>, |
| %binding0_offset : index, |
| %binding1: memref<f32>, |
| %binding1_offset : index, |
| %binding2: memref<f32>, |
| %binding2_offset : index, |
| %dim: index, %tid: index) attributes { |
| // We can include some additional fields on the parameters struct as |
| // needed. Here we request which processor is executing the call and |
| // its data fields as defined by runtime/src/iree/schemas/cpu_data.h. |
| hal.import.fields = ["processor_id", "processor_data"], |
| llvm.bareptr = true |
| } |
| |
| // IREE exported function using stream bindings and operands. |
| // Compiler passes will be able to optimize across this interface and |
| // deduplicate bindings/operands, convert/pack operands, and inline |
| // constants operands. |
| func.func @simple_mul( |
| %binding0: !stream.binding, |
| %binding1: !stream.binding, |
| %binding2: !stream.binding, |
| %dim: index) { |
| %c0 = arith.constant 0 : index |
| |
| // This function is invoked once per workgroup so determine where this |
| // particular workgroup is in the grid. In this example we use a |
| // workgroup size of 64x1x1 (which is exceedingly small for CPUs but |
| // useful for demonstration). |
| %workgroup_id_x = stream.dispatch.workgroup.id[0] : index |
| %tid = affine.apply affine_map<()[s0] -> (s0 * 64)>()[%workgroup_id_x] |
| |
| // Bindings are accessed by reference. |
| %memref0 = stream.binding.subspan %binding0[%c0] : !stream.binding -> memref<?xf32>{%dim} |
| %memref1 = stream.binding.subspan %binding1[%c0] : !stream.binding -> memref<?xf32>{%dim} |
| %memref2 = stream.binding.subspan %binding2[%c0] : !stream.binding -> memref<?xf32>{%dim} |
| |
| // The default `memref` lowering contains additional fields that might not be |
| // always required. In this example, we only need the base and offset of the |
| // `memref`s. So extract the base and offset from the memrefs. |
| %base0, %offset0, %size0, %stride0 = memref.extract_strided_metadata %memref0 |
| : memref<?xf32> -> memref<f32>, index, index, index |
| %base1, %offset1, %size1, %stride1 = memref.extract_strided_metadata %memref1 |
| : memref<?xf32> -> memref<f32>, index, index, index |
| %base2, %offset2, %size2, %stride2 = memref.extract_strided_metadata %memref2 |
| : memref<?xf32> -> memref<f32>, index, index, index |
| |
| // Call the externally defined C function with an (almost) plain C |
| // calling convention (see above for details about the mess memrefs |
| // turn into). This will be fetched at runtime from the plugin binary. |
| func.call @simple_mul_workgroup( |
| %base0, %offset0, %base1, %offset1, %base2, %offset2, %dim, %workgroup_id_x) |
| : (memref<f32>, index, memref<f32>, index, memref<f32>, index, index, index) -> () |
| |
| // NOTE: this is code generated as normal - other MLIR ops can be used |
| // here for looping/control flow, vector operations, linalg, etc. |
| // This simple sample is just calling out to the external function but |
| // microkernels fused with other code are possible. |
| |
| return |
| } |
| } |
| } |
| |
| // Function demonstrating executable plugins and mixing plugins and codegen. |
| // Invoke with: |
| // --device=local-sync |
| // --executable_plugin=standalone_plugin.sos |
| // --function=mixed_invocation |
| // --input=8xf32=2 |
| // --input=8xf32=4 |
| func.func @mixed_invocation(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>) -> tensor<?xf32> { |
| // The only externally available metadata in the dispatch are the values |
| // passed in as operands. Here we pass in the dynamic dimension. |
| %c0 = arith.constant 0 : index |
| %dim = tensor.dim %arg0, %c0 : tensor<?xf32> |
| |
| // Dispatch a basic `ret = lhs * rhs` using an external function. |
| // This form (@executable::@export) allows for automatic variant selection |
| // when multi-targeting. |
| %0 = flow.dispatch @executable::@simple_mul[%dim](%arg0, %arg1, %dim) : (tensor<?xf32>{%dim}, tensor<?xf32>{%dim}, index) -> tensor<?xf32>{%dim} |
| |
| // Code gen some other ops - these will interleave with hand-authored |
| // ones but naturally won't be able to fuse with them. |
| %1 = arith.addf %0, %arg1 : tensor<?xf32> |
| |
| return %1 : tensor<?xf32> |
| } |
| |
| } // module |