blob: 1804739c5bfed1fd3f2c8ee8d973547399700d25 [file] [log] [blame]
# Lint as: python3
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test all applications models in Keras."""
import os
from absl import flags
import numpy as np
from pyiree.tf.support import tf_test_utils
from pyiree.tf.support import tf_utils
import tensorflow.compat.v2 as tf
FLAGS = flags.FLAGS
# Testing all applications models automatically can take time
# so we test it one by one, with argument --model=MobileNet
flags.DEFINE_string('model', 'ResNet50', 'model name')
flags.DEFINE_string(
'url', '', 'url with model weights '
'for example https://storage.googleapis.com/iree_models/')
flags.DEFINE_enum('data', 'cifar10', ['cifar10', 'imagenet'],
'data sets on which model was trained: imagenet, cifar10')
flags.DEFINE_integer('include_top', 0, 'if 1 top level is appended')
APP_MODELS = {
'ResNet50':
tf.keras.applications.resnet.ResNet50,
'ResNet101':
tf.keras.applications.resnet.ResNet101,
'ResNet152':
tf.keras.applications.resnet.ResNet152,
'ResNet50V2':
tf.keras.applications.resnet_v2.ResNet50V2,
'ResNet101V2':
tf.keras.applications.resnet_v2.ResNet101V2,
'ResNet152V2':
tf.keras.applications.resnet_v2.ResNet152V2,
'VGG16':
tf.keras.applications.vgg16.VGG16,
'VGG19':
tf.keras.applications.vgg19.VGG19,
'Xception':
tf.keras.applications.xception.Xception,
'InceptionV3':
tf.keras.applications.inception_v3.InceptionV3,
'InceptionResNetV2':
tf.keras.applications.inception_resnet_v2.InceptionResNetV2,
'MobileNet':
tf.keras.applications.mobilenet.MobileNet,
'MobileNetV2':
tf.keras.applications.mobilenet_v2.MobileNetV2,
'DenseNet121':
tf.keras.applications.densenet.DenseNet121,
'DenseNet169':
tf.keras.applications.densenet.DenseNet169,
'DenseNet201':
tf.keras.applications.densenet.DenseNet201,
'NASNetMobile':
tf.keras.applications.nasnet.NASNetMobile,
'NASNetLarge':
tf.keras.applications.nasnet.NASNetLarge,
}
def get_input_shape(data, model):
if data == 'imagenet':
if (model == 'InceptionV3' or model == 'Xception' or
model == 'InceptionResNetV2'):
return (1, 299, 299, 3)
elif model == 'NASNetLarge':
return (1, 331, 331, 3)
else:
return (1, 224, 224, 3)
elif data == 'cifar10':
return (1, 32, 32, 3)
else:
raise ValueError('Not supported data ', data)
def models():
tf.keras.backend.set_learning_phase(False)
tf_utils.set_random_seed()
input_shape = get_input_shape(FLAGS.data, FLAGS.model)
# keras model receives images size as input,
# where batch size is not specified - by default it is dynamic
if FLAGS.model in APP_MODELS:
weights = 'imagenet' if FLAGS.data == 'imagenet' else None
# if weights == 'imagenet' it will load weights from external tf.keras URL
model = APP_MODELS[FLAGS.model](
weights=weights,
include_top=FLAGS.include_top,
input_shape=input_shape[1:])
if FLAGS.data == 'cifar10' and FLAGS.url:
file_name = 'cifar10' + FLAGS.model
# it will download model weights from publically available folder: PATH
# and save it to cache_dir=~/.keras and return path to it
weights_path = tf.keras.utils.get_file(
file_name,
os.path.join(
FLAGS.url,
'cifar10_include_top_{}_{}'.format(FLAGS.include_top,
FLAGS.model + '.h5')))
model.load_weights(weights_path)
else:
raise ValueError('Unsupported model', FLAGS.model)
module = tf.Module()
module.m = model
# specify input size with static batch size
# TODO(b/142948097): with support of dynamic shape
# replace input_shape by model.input_shape, so batch size will be dynamic (-1)
module.predict = tf.function(input_signature=[tf.TensorSpec(input_shape)])(
model.call)
return module
@tf_test_utils.compile_module(models, exported_names=['predict'])
class AppTest(tf_test_utils.SavedModelTestCase):
def test_application(self):
input_shape = get_input_shape(FLAGS.data, FLAGS.model)
input_data = np.random.rand(np.prod(np.array(input_shape))).astype(
np.float32)
input_data = input_data.reshape(input_shape)
self.get_module().predict(input_data).print().assert_all_close(atol=1e-6)
if __name__ == '__main__':
if hasattr(tf, 'enable_v2_behavior'):
tf.enable_v2_behavior()
tf.test.main()