blob: 671c31b67fad02d206c0281dba1ea896fdd5f3d3 [file] [log] [blame]
# Lint as: python3
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from pyiree.tf.support import tf_test_utils
from pyiree.tf.support import tf_utils
import tensorflow.compat.v2 as tf
NUM_UNITS = 10
NUM_TIMESTEPS = 24
NUM_BATCH = 7
INPUT_SHAPE = [None, None, NUM_UNITS]
def lstm_module():
tf_utils.set_random_seed()
inputs = tf.keras.layers.Input(batch_size=None, shape=INPUT_SHAPE[1:])
outputs = tf.keras.layers.LSTM(units=NUM_UNITS, return_sequences=True)(inputs)
model = tf.keras.Model(inputs, outputs)
module = tf.Module()
module.m = model
module.predict = tf.function(
input_signature=[tf.TensorSpec(INPUT_SHAPE, tf.float32)])(
model.call)
return module
@tf_test_utils.compile_module(lstm_module, exported_names=["predict"])
class LstmTest(tf_test_utils.SavedModelTestCase):
def test_lstm(self):
m = self.get_module()
m.predict(
tf.constant(
np.arange(NUM_BATCH * NUM_TIMESTEPS * NUM_UNITS,
dtype=np.float32).reshape(
[NUM_BATCH, NUM_TIMESTEPS, NUM_UNITS]),
shape=[NUM_BATCH, NUM_TIMESTEPS,
NUM_UNITS])).print().assert_all_close()
if __name__ == "__main__":
if hasattr(tf, "enable_v2_behavior"):
tf.enable_v2_behavior()
tf.test.main()