blob: b9430939081418157c5b037d6e935d8d4bf6dc62 [file] [log] [blame]
// Copyright 2020 The IREE Authors
//
// Licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#include "runtime/bindings/tflite/tensor.h"
#include "runtime/bindings/tflite/shim.h"
iree_status_t _TfLiteTensorParseNameAttr(TfLiteTensor* tensor,
iree_string_view_t attr,
iree_allocator_t allocator) {
char* str = NULL;
IREE_RETURN_IF_ERROR(
iree_allocator_malloc(allocator, attr.size + 1, (void**)&str));
memcpy(str, attr.data, attr.size);
str[attr.size] = 0;
tensor->name = iree_make_string_view(str, attr.size);
return iree_ok_status();
}
iree_status_t _TfLiteTensorParseTypeAttr(TfLiteTensor* tensor,
iree_string_view_t attr) {
// TODO(#3978): extract tensor type and plumb through iree.reflection.
tensor->type = kTfLiteFloat32;
return iree_ok_status();
}
iree_status_t _TfLiteTensorParseQuantAttr(TfLiteTensor* tensor,
iree_string_view_t attr) {
// TODO(#3972): extract !quant.uniform and plumb through iree.reflection.
tensor->quantization_params.scale = 0.0f;
tensor->quantization_params.zero_point = 0;
return iree_ok_status();
}
// Who the hell uses sizeof(bool) - an **implementation-defined value** -
// as a wire format? https://stackoverflow.com/a/4897859
static_assert(sizeof(bool) == 1, "bool must be 1 byte to match tf/tflite");
// Converts a tflite type to the HAL storage type.
// If the is a composite of multiple primitive types (such as a complex number)
// then |out_storage_scalar| is set to >1.
static iree_status_t _TfLiteTypeToElementType(
TfLiteType type, iree_hal_element_type_t* out_element_type,
iree_host_size_t* out_storage_scalar) {
*out_element_type = IREE_HAL_ELEMENT_TYPE_NONE;
*out_storage_scalar = 1;
switch (type) {
default:
case kTfLiteNoType:
// Hopefully only used as a sentinel.
*out_element_type = IREE_HAL_ELEMENT_TYPE_NONE;
break;
case kTfLiteInt8:
*out_element_type = IREE_HAL_ELEMENT_TYPE_SINT_8;
break;
case kTfLiteUInt8:
*out_element_type = IREE_HAL_ELEMENT_TYPE_UINT_8;
break;
case kTfLiteInt16:
*out_element_type = IREE_HAL_ELEMENT_TYPE_SINT_16;
break;
case kTfLiteInt32:
*out_element_type = IREE_HAL_ELEMENT_TYPE_SINT_32;
break;
case kTfLiteInt64:
*out_element_type = IREE_HAL_ELEMENT_TYPE_SINT_64;
break;
case kTfLiteUInt64:
*out_element_type = IREE_HAL_ELEMENT_TYPE_UINT_64;
break;
case kTfLiteFloat16:
*out_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_16;
break;
case kTfLiteFloat32:
*out_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_32;
break;
case kTfLiteFloat64:
*out_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_64;
break;
case kTfLiteBool:
*out_element_type = IREE_HAL_ELEMENT_TYPE_UINT_8;
break;
case kTfLiteComplex64:
*out_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_32;
*out_storage_scalar = 2; // real + imag
break;
case kTfLiteComplex128:
*out_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_64;
*out_storage_scalar = 2; // real + imag
break;
case kTfLiteString:
// This isn't a tensor, it's an std::vector<std::string>. Don't use this
// type and instead use the IREE C API which has such amazing modern
// programming concepts like ... lists.
return iree_make_status(IREE_STATUS_UNIMPLEMENTED,
"kTfLiteString is not implemented (and won't "
"be); use the IREE C API");
}
return iree_ok_status();
}
iree_status_t _TfLiteTensorReallocateIfNeeded(
TfLiteTensor* tensor, iree_hal_allocator_t* buffer_allocator,
iree_allocator_t heap_allocator) {
IREE_TRACE_ZONE_BEGIN(z0);
// Format conversion; ensure we can support the type.
iree_hal_element_type_t element_type = IREE_HAL_ELEMENT_TYPE_NONE;
iree_host_size_t storage_scalar = 1;
IREE_RETURN_AND_END_ZONE_IF_ERROR(
z0,
_TfLiteTypeToElementType(tensor->type, &element_type, &storage_scalar));
// Compute the total allocation size required, possibly with padding.
iree_hal_dim_t shape_dims[IREE_BINDINGS_TFLITE_MAX_RANK];
for (int32_t i = 0; i < tensor->shape_rank; ++i) {
shape_dims[i] = (iree_hal_dim_t)tensor->shape_dims[i];
}
iree_device_size_t allocation_size = 0;
IREE_RETURN_AND_END_ZONE_IF_ERROR(
z0, iree_hal_buffer_compute_view_size(
tensor->shape_rank, shape_dims, element_type,
IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR, &allocation_size));
allocation_size *= storage_scalar;
// If the old buffer is the same size then no need to realloc.
if (tensor->buffer &&
iree_hal_buffer_byte_length(tensor->buffer) == allocation_size) {
IREE_TRACE_ZONE_END(z0);
return iree_ok_status();
}
// Allocate the underlying buffer for the tensor.
IREE_RETURN_AND_END_ZONE_IF_ERROR(
z0, iree_hal_allocator_allocate_buffer(
buffer_allocator,
(iree_hal_buffer_params_t){
.type = IREE_HAL_MEMORY_TYPE_DEVICE_LOCAL |
IREE_HAL_MEMORY_TYPE_HOST_VISIBLE,
.usage = IREE_HAL_BUFFER_USAGE_DISPATCH_STORAGE |
IREE_HAL_BUFFER_USAGE_TRANSFER |
IREE_HAL_BUFFER_USAGE_MAPPING,
},
allocation_size, &tensor->buffer));
// Map the buffer memory immediately. The tflite API doesn't let us know if
// this is a buffer the user will actually touch or some state buffer that is
// just going to be passed to future invocations. We could move this to an
// on-demand mapping when the user calls TfLiteTensorData but this at least
// puts potential errors in the same easy to find place.
IREE_RETURN_AND_END_ZONE_IF_ERROR(
z0,
iree_hal_buffer_map_range(tensor->buffer, IREE_HAL_MAPPING_MODE_SCOPED,
IREE_HAL_MEMORY_ACCESS_ALL, 0,
IREE_WHOLE_BUFFER, &tensor->buffer_mapping));
IREE_TRACE_ZONE_END(z0);
return iree_ok_status();
}
iree_status_t _TfLiteTensorBind(TfLiteTensor* tensor,
iree_hal_buffer_t* buffer) {
IREE_TRACE_ZONE_BEGIN(z0);
_TfLiteTensorDiscardBuffer(tensor);
if (!buffer) {
// Just a discard (invalid output/etc).
IREE_TRACE_ZONE_END(z0);
return iree_ok_status();
}
// Attempt to map the buffer. The tflite API doesn't let us know if this
// should be read or read/write - or if we even need to map at all. We could
// move this to an on-demand mapping when the user calls TfLiteTensorData but
// this at least puts potential errors in the same easy to find place.
iree_device_size_t byte_offset = 0;
iree_device_size_t byte_length = IREE_WHOLE_BUFFER;
IREE_RETURN_AND_END_ZONE_IF_ERROR(
z0, iree_hal_buffer_map_range(
buffer, IREE_HAL_MAPPING_MODE_SCOPED,
IREE_HAL_MEMORY_ACCESS_READ | IREE_HAL_MEMORY_ACCESS_WRITE,
byte_offset, byte_length, &tensor->buffer_mapping));
// Retain the buffer view until discarded/reset.
tensor->buffer = buffer;
iree_hal_buffer_retain(tensor->buffer);
IREE_TRACE_ZONE_END(z0);
return iree_ok_status();
}
void _TfLiteTensorDiscardBuffer(TfLiteTensor* tensor) {
IREE_TRACE_ZONE_BEGIN(z0);
if (tensor->buffer_mapping.contents.data != NULL) {
iree_hal_buffer_unmap_range(&tensor->buffer_mapping);
}
iree_hal_buffer_release(tensor->buffer);
tensor->buffer = NULL;
IREE_TRACE_ZONE_END(z0);
}
void _TfLiteTensorReset(TfLiteTensor* tensor, iree_allocator_t allocator) {
_TfLiteTensorDiscardBuffer(tensor);
if (tensor->name.data) {
iree_allocator_free(allocator, (void*)tensor->name.data);
}
}
TFL_CAPI_EXPORT extern TfLiteType TfLiteTensorType(const TfLiteTensor* tensor) {
return tensor->type;
}
TFL_CAPI_EXPORT extern int32_t TfLiteTensorNumDims(const TfLiteTensor* tensor) {
return tensor->shape_rank;
}
TFL_CAPI_EXPORT extern int32_t TfLiteTensorDim(const TfLiteTensor* tensor,
int32_t dim_index) {
return tensor->shape_dims[dim_index];
}
TFL_CAPI_EXPORT extern size_t TfLiteTensorByteSize(const TfLiteTensor* tensor) {
return (size_t)iree_hal_buffer_byte_length(tensor->buffer);
}
TFL_CAPI_EXPORT extern void* TfLiteTensorData(const TfLiteTensor* tensor) {
return tensor->buffer_mapping.contents.data;
}
TFL_CAPI_EXPORT extern const char* TfLiteTensorName(
const TfLiteTensor* tensor) {
return tensor->name.data;
}
TFL_CAPI_EXPORT extern TfLiteQuantizationParams TfLiteTensorQuantizationParams(
const TfLiteTensor* tensor) {
return tensor->quantization_params;
}
TFL_CAPI_EXPORT extern TfLiteStatus TfLiteTensorCopyFromBuffer(
TfLiteTensor* tensor, const void* input_data, size_t input_data_size) {
if (input_data_size != tensor->buffer_mapping.contents.data_length) {
return kTfLiteApplicationError;
}
IREE_TRACE_ZONE_BEGIN(z0);
IREE_TRACE_ZONE_APPEND_VALUE_I64(z0,
tensor->buffer_mapping.contents.data_length);
// NOTE: we could use a iree_hal_buffer_map_write here but we already
// have the buffer mapped. If we knew the user would never use
// TfLiteTensorData and could avoid mapping the buffer it would be more
// efficient and portable to do the iree_hal_buffer_map_copy.
memcpy(tensor->buffer_mapping.contents.data, input_data, input_data_size);
IREE_TRACE_ZONE_END(z0);
return kTfLiteOk;
}
TFL_CAPI_EXPORT extern TfLiteStatus TfLiteTensorCopyToBuffer(
const TfLiteTensor* output_tensor, void* output_data,
size_t output_data_size) {
if (output_data_size != output_tensor->buffer_mapping.contents.data_length) {
return kTfLiteApplicationError;
}
IREE_TRACE_ZONE_BEGIN(z0);
IREE_TRACE_ZONE_APPEND_VALUE_I64(
z0, output_tensor->buffer_mapping.contents.data_length);
// NOTE: as with above we should use an iree_hal_buffer_map_read here.
memcpy(output_data, output_tensor->buffer_mapping.contents.data,
output_data_size);
IREE_TRACE_ZONE_END(z0);
return kTfLiteOk;
}