| // RUN: iree-compile --split-input-file --iree-hal-target-backends=vmvx \ |
| // RUN: --output-format=vm-bytecode \ |
| // RUN: --iree-vm-bytecode-module-output-format=flatbuffer-text %s \ |
| // RUN: --mlir-print-ir-after=iree-vm-ordinal-allocation 2>&1 | FileCheck %s |
| |
| // This file has a few test programs that show how to mix `flow` dispatches into |
| // those created by the `linalg` dispatch region formation: the idea is to use |
| // any normal IREE input (mhlo/tosa/linalg/etc) on tensors and then also include |
| // `flow.dispatch` ops calling `stream.executable`s. `flow.executable`s could be |
| // used too but currently have some ergonomics issues that need to be resolved; |
| // the improved version of `flow.dispatch` (and `flow.dispatch.workgroups`) will |
| // be made part of the public `iree` dialect at which time this file will change |
| // to using that. The `flow`/`stream` dialects are generally not considered |
| // stable. |
| |
| // A simple element-wise multiply of two static tensors: |
| // %ret0 = %arg0 * %arg1 |
| // |
| // The host code performs the dispatch with a workload of 4x1x1 - how many |
| // workgroups that gets distributed across is left to the HAL backend to decide |
| // based on the target device and how the work is tiled. |
| // |
| // The device code in the stream.executable is tiled - but does not need to be: |
| // the only thing we care about at this level is the bindings and any operands |
| // that may need to be passed from host->device. |
| |
| // CHECK-LABEL: vm.module public @e2e |
| module @e2e { |
| // CHECK: vm.rodata private @executable_0_vmvx_bytecode_fb |
| stream.executable private @executable_0 { |
| stream.executable.export public @dispatch workgroups(%arg0: index) -> (index, index, index) { |
| %x, %y, %z = flow.dispatch.workgroup_count_from_dag_root %arg0 |
| stream.return %x, %y, %z : index, index, index |
| } |
| builtin.module { |
| func.func @dispatch(%arg0: !stream.binding, %arg1: !stream.binding, %ret0: !stream.binding) { |
| %c0 = arith.constant 0 : index |
| %0 = stream.binding.subspan %arg0[%c0] : !stream.binding -> !flow.dispatch.tensor<readonly:tensor<4xf32>> |
| %1 = stream.binding.subspan %arg1[%c0] : !stream.binding -> !flow.dispatch.tensor<readonly:tensor<4xf32>> |
| %2 = stream.binding.subspan %ret0[%c0] : !stream.binding -> !flow.dispatch.tensor<writeonly:tensor<4xf32>> |
| %3 = flow.dispatch.tensor.load %0, offsets = [0], sizes = [4], strides = [1] : !flow.dispatch.tensor<readonly:tensor<4xf32>> -> tensor<4xf32> |
| %4 = flow.dispatch.tensor.load %1, offsets = [0], sizes = [4], strides = [1] : !flow.dispatch.tensor<readonly:tensor<4xf32>> -> tensor<4xf32> |
| %5 = tensor.empty() : tensor<4xf32> |
| %6 = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"]} ins(%3, %4 : tensor<4xf32>, tensor<4xf32>) outs(%5 : tensor<4xf32>) attrs = {name = "mul.1"} { |
| ^bb0(%arg4: f32, %arg5: f32, %arg6: f32): |
| %10 = arith.mulf %arg4, %arg5 : f32 |
| linalg.yield %10 : f32 |
| } -> tensor<4xf32> |
| flow.dispatch.tensor.store %6, %2, offsets = [0], sizes = [4], strides = [1] : tensor<4xf32> -> !flow.dispatch.tensor<writeonly:tensor<4xf32>> |
| return |
| } |
| } |
| } |
| // CHECK: vm.func private @__simple_mul_memoize_apply |
| // CHECK: vm.call.variadic @hal.command_buffer.dispatch |
| func.func @simple_mul(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { |
| %c4 = arith.constant 4 : index |
| %ret0 = flow.dispatch @executable_0::@dispatch[%c4](%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> |
| return %ret0 : tensor<4xf32> |
| } |
| } // module |
| |
| // ----- |
| |
| // The same element-wise multiply but now in-place: |
| // %arg0 = %arg0 * %arg1 |
| // |
| // In-place operations can often introduce false dependencies between dispatches |
| // and should be avoided at this level in most cases - there's currently no cost |
| // model for making dispatches into in-place operations but it's something that |
| // would happen in the stream dialect after scheduling: two dispatches known to |
| // not be running concurrently and operating on the same resources could be made |
| // in-place. |
| |
| // CHECK-LABEL: vm.module public @inplace |
| module @inplace { |
| // CHECK: vm.rodata private @executable_1_vmvx_bytecode_fb |
| stream.executable private @executable_1 { |
| stream.executable.export public @dispatch workgroups(%arg0: index) -> (index, index, index) { |
| %x, %y, %z = flow.dispatch.workgroup_count_from_dag_root %arg0 |
| stream.return %x, %y, %z : index, index, index |
| } |
| builtin.module { |
| func.func @dispatch(%arg0: !stream.binding, %arg1: !stream.binding) { |
| %c0 = arith.constant 0 : index |
| %0 = stream.binding.subspan %arg0[%c0] : !stream.binding -> !flow.dispatch.tensor<readwrite:tensor<4xf32>> |
| %1 = stream.binding.subspan %arg1[%c0] : !stream.binding -> !flow.dispatch.tensor<readonly:tensor<4xf32>> |
| %3 = flow.dispatch.tensor.load %0, offsets = [0], sizes = [4], strides = [1] : !flow.dispatch.tensor<readwrite:tensor<4xf32>> -> tensor<4xf32> |
| %4 = flow.dispatch.tensor.load %1, offsets = [0], sizes = [4], strides = [1] : !flow.dispatch.tensor<readonly:tensor<4xf32>> -> tensor<4xf32> |
| %5 = tensor.empty() : tensor<4xf32> |
| %6 = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"]} ins(%3, %4 : tensor<4xf32>, tensor<4xf32>) outs(%5 : tensor<4xf32>) attrs = {name = "mul.1"} { |
| ^bb0(%arg4: f32, %arg5: f32, %arg6: f32): |
| %10 = arith.mulf %arg4, %arg5 : f32 |
| linalg.yield %10 : f32 |
| } -> tensor<4xf32> |
| flow.dispatch.tensor.store %6, %0, offsets = [0], sizes = [4], strides = [1] : tensor<4xf32> -> !flow.dispatch.tensor<readwrite:tensor<4xf32>> |
| return |
| } |
| } |
| } |
| // CHECK: vm.func private @__simple_mul_inplace_memoize_apply |
| // CHECK: vm.call.variadic @hal.command_buffer.dispatch |
| func.func @simple_mul_inplace(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { |
| %c4 = arith.constant 4 : index |
| %ret0 = flow.dispatch @executable_1::@dispatch[%c4](%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> %arg0 |
| return %ret0 : tensor<4xf32> |
| } |
| } // module |
| |
| // ----- |
| |
| // The same element-wise multiply but now with dynamic shapes: |
| // %ret0 = %arg0 * %arg1 |
| // |
| // This shows how the shape dimensions are captured by the dispatch so that the |
| // host knows the shapes of the tensors and how the dimensions are passed as |
| // operands to the executable for association. Once we perform the host/device |
| // split the association allows tensor.dim ops in the device code to query the |
| // dynamic dimensions without needing to insert new host -> device transfers. |
| // Note that because of this explicit association the order of the dispatch |
| // operands doesn't matter as walking the SSA use-def chain up to the |
| // stream.binding.subspan allows them to be resolved directly. |
| |
| // CHECK-LABEL: vm.module public @dynamic |
| module @dynamic { |
| // CHECK: vm.rodata private @executable_2_vmvx_bytecode_fb |
| stream.executable private @executable_2 { |
| stream.executable.export public @dispatch workgroups(%arg0: index) -> (index, index, index) { |
| %x, %y, %z = flow.dispatch.workgroup_count_from_dag_root %arg0 |
| stream.return %x, %y, %z : index, index, index |
| } |
| builtin.module { |
| func.func @dispatch(%arg0: !stream.binding, %arg0_dim0: index, %arg1: !stream.binding, %arg1_dim0: index, %ret0: !stream.binding) { |
| %c0 = arith.constant 0 : index |
| %0 = stream.binding.subspan %arg0[%c0] : !stream.binding -> !flow.dispatch.tensor<readonly:tensor<?xf32>>{%arg0_dim0} |
| %1 = stream.binding.subspan %arg1[%c0] : !stream.binding -> !flow.dispatch.tensor<readonly:tensor<?xf32>>{%arg1_dim0} |
| %2 = stream.binding.subspan %ret0[%c0] : !stream.binding -> !flow.dispatch.tensor<writeonly:tensor<?xf32>>{%arg0_dim0} |
| %3 = flow.dispatch.tensor.load %0, offsets = [0], sizes = [%arg0_dim0], strides = [1] : !flow.dispatch.tensor<readonly:tensor<?xf32>>{%arg0_dim0} -> tensor<?xf32> |
| %4 = flow.dispatch.tensor.load %1, offsets = [0], sizes = [%arg1_dim0], strides = [1] : !flow.dispatch.tensor<readonly:tensor<?xf32>>{%arg1_dim0} -> tensor<?xf32> |
| %5 = tensor.empty(%arg0_dim0) : tensor<?xf32> |
| %6 = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"]} ins(%3, %4 : tensor<?xf32>, tensor<?xf32>) outs(%5 : tensor<?xf32>) attrs = {name = "mul.1"} { |
| ^bb0(%arg6: f32, %arg7: f32, %arg8: f32): |
| %10 = arith.mulf %arg6, %arg7 : f32 |
| linalg.yield %10 : f32 |
| } -> tensor<?xf32> |
| flow.dispatch.tensor.store %6, %2, offsets = [0], sizes = [%arg0_dim0], strides = [1] : tensor<?xf32> -> !flow.dispatch.tensor<writeonly:tensor<?xf32>>{%arg0_dim0} |
| return |
| } |
| } |
| } |
| // CHECK: vm.func private @simple_mul_dynamic |
| func.func @simple_mul_dynamic(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>) -> tensor<?xf32> { |
| %c0 = arith.constant 0 : index |
| // CHECK: vm.call @hal.buffer_view.dim |
| %arg0_dim0 = tensor.dim %arg0, %c0 : tensor<?xf32> |
| // CHECK: vm.call @hal.buffer_view.dim |
| %arg1_dim0 = tensor.dim %arg1, %c0 : tensor<?xf32> |
| // CHECK: vm.call.variadic @hal.command_buffer.dispatch |
| %ret0 = flow.dispatch @executable_2::@dispatch[%arg0_dim0](%arg0, %arg0_dim0, %arg1, %arg1_dim0) : (tensor<?xf32>{%arg0_dim0}, index, tensor<?xf32>{%arg1_dim0}, index) -> tensor<?xf32>{%arg0_dim0} |
| return %ret0 : tensor<?xf32> |
| } |
| } // module |
| |
| // ----- |
| |
| // This shows the same element-wise multiply but without the first level of |
| // tiling. This will execute in a single workgroup regardless of tensor size |
| // (though here it's 4 so it wouldn't be distributed anyway). |
| |
| // CHECK-LABEL: vm.module public @untiled |
| module @untiled { |
| // CHECK: vm.rodata private @executable_3_vmvx_bytecode_fb |
| stream.executable private @executable_3 { |
| stream.executable.export public @dispatch workgroups(%arg0: index) -> (index, index, index) { |
| %c1 = arith.constant 1 : index |
| stream.return %c1, %c1, %c1 : index, index, index |
| } |
| builtin.module { |
| func.func @dispatch(%arg0: !stream.binding, %arg1: !stream.binding, %ret0: !stream.binding) { |
| %c0 = arith.constant 0 : index |
| %0 = stream.binding.subspan %arg0[%c0] : !stream.binding -> !flow.dispatch.tensor<readonly:tensor<4xf32>> |
| %1 = stream.binding.subspan %arg1[%c0] : !stream.binding -> !flow.dispatch.tensor<readonly:tensor<4xf32>> |
| %2 = stream.binding.subspan %ret0[%c0] : !stream.binding -> !flow.dispatch.tensor<writeonly:tensor<4xf32>> |
| %3 = flow.dispatch.tensor.load %0, offsets = [0], sizes = [4], strides = [1] : !flow.dispatch.tensor<readonly:tensor<4xf32>> -> tensor<4xf32> |
| %4 = flow.dispatch.tensor.load %1, offsets = [0], sizes = [4], strides = [1] : !flow.dispatch.tensor<readonly:tensor<4xf32>> -> tensor<4xf32> |
| %5 = tensor.empty() : tensor<4xf32> |
| %6 = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"]} ins(%3, %4 : tensor<4xf32>, tensor<4xf32>) outs(%5 : tensor<4xf32>) { |
| ^bb0(%lhs: f32, %rhs: f32, %out: f32): |
| %7 = arith.mulf %lhs, %rhs : f32 |
| linalg.yield %7 : f32 |
| } -> tensor<4xf32> |
| flow.dispatch.tensor.store %6, %2, offsets = [0], sizes = [4], strides = [1] : tensor<4xf32> -> !flow.dispatch.tensor<writeonly:tensor<4xf32>> |
| return |
| } |
| } |
| } |
| // CHECK: vm.func private @simple_mul_untiled |
| func.func @simple_mul_untiled(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { |
| %c1 = arith.constant 1 : index |
| %ret0 = flow.dispatch @executable_3::@dispatch[%c1](%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> |
| return %ret0 : tensor<4xf32> |
| } |
| } // module |