| # Lint as: python3 |
| # Copyright 2019 Google LLC |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # https://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| |
| # This test is the same as keras_lstm_test, but all shapes are static. |
| # This stresses the TensorList lowering more specifically. |
| |
| from pyiree.tf.support import tf_test_utils |
| import tensorflow.compat.v2 as tf |
| |
| NUM_UNITS = 10 |
| NUM_TIMESTEPS = 24 |
| NUM_BATCH = 7 |
| |
| |
| class Lstm(tf.Module): |
| |
| def __init__(self): |
| super(Lstm, self).__init__() |
| self.lstm = tf.keras.layers.LSTM(units=NUM_UNITS, return_sequences=True) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([NUM_BATCH, NUM_TIMESTEPS, NUM_UNITS], tf.float32) |
| ]) |
| def predict(self, x): |
| return self.lstm(x) |
| |
| |
| # TODO(silvasean): Get this test working on IREE. |
| @tf_test_utils.compile_modules(backends=["tf"], lstm=(Lstm, ["predict"])) |
| class LstmTest(tf_test_utils.SavedModelTestCase): |
| |
| def test_lstm(self): |
| m = self.modules.lstm.all |
| m.predict(tf.constant(0., shape=[NUM_BATCH, NUM_TIMESTEPS, |
| NUM_UNITS])).print().assert_all_close() |
| |
| |
| if __name__ == "__main__": |
| if hasattr(tf, "enable_v2_behavior"): |
| tf.enable_v2_behavior() |
| tf.test.main() |