blob: b4fc0a9bbe65d6f228eacd33fa49d78da1146d4b [file] [log] [blame]
# Lint as: python3
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This test is the same as keras_lstm_test, but all shapes are static.
# This stresses the TensorList lowering more specifically.
from pyiree.tf.support import tf_test_utils
import tensorflow.compat.v2 as tf
NUM_UNITS = 10
NUM_TIMESTEPS = 24
NUM_BATCH = 7
class Lstm(tf.Module):
def __init__(self):
super(Lstm, self).__init__()
self.lstm = tf.keras.layers.LSTM(units=NUM_UNITS, return_sequences=True)
@tf.function(input_signature=[
tf.TensorSpec([NUM_BATCH, NUM_TIMESTEPS, NUM_UNITS], tf.float32)
])
def predict(self, x):
return self.lstm(x)
# TODO(silvasean): Get this test working on IREE.
@tf_test_utils.compile_modules(backends=["tf"], lstm=(Lstm, ["predict"]))
class LstmTest(tf_test_utils.SavedModelTestCase):
def test_lstm(self):
m = self.modules.lstm.all
m.predict(tf.constant(0., shape=[NUM_BATCH, NUM_TIMESTEPS,
NUM_UNITS])).print().assert_all_close()
if __name__ == "__main__":
if hasattr(tf, "enable_v2_behavior"):
tf.enable_v2_behavior()
tf.test.main()