| // Copyright 2020 Google LLC |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // ModelRunner.h |
| // ----------------------------------------------------------------------------- |
| // |
| // MLIR Model Runner |
| // |
| // The ModelRunner exposes relevant core MLIR and LLVM APIs that are sufficient |
| // to compile an mlir::ModuleOp. This set of classes and APIs encompass: |
| // 1. an mlir::ExecutionEngine engine |
| // 2. and llvm::TargetMachine targetMachine; |
| // 3. a `compile` function that takes optimization levels for the llvm opt and |
| // llc tools and produces LLVMIR. |
| // |
| // Usage: |
| // ====== |
| // |
| // ``` |
| // // Create the builder and build some mlir::FuncOp |
| // ModelBuilder modelBuilder(...); |
| // |
| // // Compile the function. |
| // ModelRunner runner(modelBuilder.getModuleRef()); |
| // runner.compile(/*llvmOptLevel=*/3, /*llcOptLevel=*/3); |
| // |
| // // Allocate data within data structures that interoperate with the MLIR ABI |
| // // conventions used by codegen. |
| // auto inputBuffer = ...; |
| // auto outputBuffer = ...; |
| // |
| // // Call the funcOp name `funcName` with arguments. |
| // runner.engine->invoke(funcName, ...); |
| // ``` |
| |
| #ifndef IREE_EXPERIMENTAL_MODELBUILDER_MODELRUNNER_H_ |
| #define IREE_EXPERIMENTAL_MODELBUILDER_MODELRUNNER_H_ |
| |
| #include <functional> |
| |
| #include "experimental/ModelBuilder/MemRefUtils.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "mlir/Dialect/Vector/VectorOps.h" |
| #include "mlir/ExecutionEngine/ExecutionEngine.h" |
| #include "mlir/IR/Module.h" |
| |
| namespace llvm { |
| class TargetMachine; |
| } // namespace llvm |
| |
| namespace mlir { |
| class PassManager; |
| class ExecutionEngine; |
| |
| struct CompilationOptions { |
| unsigned llvmOptLevel = 3; |
| unsigned llcOptLevel = 3; |
| vector::VectorTransformsOptions vectorTransformsOptions = |
| vector::VectorTransformsOptions(); |
| std::function<void(mlir::PassManager &)> loweringPasses = nullptr; |
| }; |
| |
| class ModelRunner { |
| public: |
| enum class Target { CPUTarget, GPUTarget }; |
| // Initialize the runner with an OwningModuleRef, typically constructed with |
| // a ModelBiulder. |
| ModelRunner(mlir::OwningModuleRef &m, Target t = Target::CPUTarget) |
| : module(m), target(t) {} |
| |
| // Get the underlying ModuleOp. |
| ModuleOp getOperation() { return *module; } |
| |
| // Compile the owned `module` into LLVMIR that can be passed to the buffer. |
| // For now, the MLIR passes and transformations are kept to a minimum and only |
| // perform straightforward lowering to LLVMIR. |
| // An optional CompilationOptions object is passed to control special passes. |
| // An optional array of shared runtime support libraries is passed to the |
| // execution engine. |
| // An optional array of extra symbols can be given. |
| void compile( |
| CompilationOptions compilationOptions, |
| llvm::ArrayRef<const std::string> runtime = None, |
| llvm::ArrayRef<std::pair<std::string, void *>> extra_symbols = None); |
| |
| // Reference to the compiled module. |
| mlir::OwningModuleRef &module; |
| |
| // Indirect invocation where the caller sets up the proper indirect pointers |
| // and passes a void** `args` parameter. |
| llvm::Error invokeIndirect(StringRef funcName, void **args) { |
| const std::string adapterName = |
| std::string("_mlir_ciface_") + funcName.str(); |
| return engine->invoke(adapterName, llvm::MutableArrayRef<void *>{*args}); |
| } |
| |
| // Get the underlying data for a StridedMemRefType wrapped in a unique_ptr. |
| // Used with SFINAE. |
| template <typename T, typename Fun, int U> |
| void *getData(std::unique_ptr<StridedMemRefType<T, U>, Fun> &arg) { |
| return arg.get(); |
| } |
| // Get the underlying data for an UnrankedMemRefType wrapped in a unique_ptr. |
| // Used with SFINAE. |
| template <typename T, typename Fun> |
| void *getData(std::unique_ptr<::UnrankedMemRefType<T>, Fun> &arg) { |
| return arg->descriptor; |
| } |
| // Direct invocation based on MemRefType which automatically packs the data. |
| template <typename... Args> |
| // TODO(suderman): Re-enable clang-format when new version migrates. |
| // clang-format off |
| llvm::Error invoke(StringRef funcName, Args &...args) { |
| // clang-format on |
| const std::string adapterName = |
| std::string("_mlir_ciface_") + funcName.str(); |
| void *argsArray[] = {getData(args)...}; |
| std::array<void *, sizeof...(Args)> argsArray2; |
| for (unsigned i = 0; i < sizeof...(Args); ++i) |
| argsArray2[i] = &argsArray[i]; |
| return engine->invoke(adapterName, |
| llvm::MutableArrayRef<void *>{argsArray2}); |
| } |
| |
| protected: |
| std::function<void(mlir::PassManager &)> getDefaultMLIRPassBuilder(); |
| void runLoweringPass(std::function<void(mlir::PassManager &)> passBuilder); |
| |
| Target target; |
| // An execution engine and an associated target machine. The latter must |
| // outlive the former since it may be used by the transformation layers. |
| std::unique_ptr<mlir::ExecutionEngine> engine; |
| std::unique_ptr<llvm::TargetMachine> targetMachine; |
| }; |
| |
| } // namespace mlir |
| |
| #endif // IREE_EXPERIMENTAL_MODELBUILDER_MODELRUNNER_H_ |