| // RUN: iree-tf-opt -pass-pipeline=iree-tf-saved-model-lower-global-tensors -verify-diagnostics -split-input-file <%s | IreeFileCheck %s |
| |
| // TODO(silvasean): Make this interprocedural. |
| |
| // CHECK-LABEL: module attributes {tf_saved_model.semantics} |
| module attributes {tf_saved_model.semantics} { |
| |
| // CHECK: flow.variable [[V:@.+]] mutable dense<1.000000e+00> : tensor<1xf32> |
| // CHECK: func @f(%arg0: tensor<?xf32> {tf_saved_model.index_path = [0]}) attributes {tf_saved_model.exported_names = ["f"]} { |
| // CHECK-NEXT: [[PTR:%.+]] = flow.variable.address [[V]] : !iree.ptr<tensor<?xf32>> |
| // CHECK-NEXT: br ^bb1([[PTR]] : !iree.ptr<tensor<?xf32>>) |
| // CHECK-NEXT: ^bb1([[PTR1:%.+]]: !iree.ptr<tensor<?xf32>>): // pred: ^bb0 |
| // CHECK-NEXT: flow.variable.store.indirect %arg0, [[PTR1]] : tensor<?xf32> -> !iree.ptr<tensor<?xf32>> |
| // CHECK-NEXT: return |
| |
| |
| "tf_saved_model.global_tensor"() { is_mutable, sym_name = "v", type = tensor<?xf32>, value = dense<1.> : tensor<1xf32> } : () -> () |
| func @f(%arg0: tensor<?xf32> {tf_saved_model.index_path = [0]}, %arg1: tensor<!tf.resource<tensor<?xf32>>> {tf_saved_model.bound_input = @v}) attributes {tf_saved_model.exported_names = ["f"]} { |
| br ^bb1(%arg1 : tensor<!tf.resource<tensor<?xf32>>>) |
| ^bb1(%r: tensor<!tf.resource<tensor<?xf32>>>): |
| "tf.AssignVariableOp"(%r, %arg0) : (tensor<!tf.resource<tensor<?xf32>>>, tensor<?xf32>) -> () |
| return |
| } |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: module attributes {tf_saved_model.semantics} |
| module attributes {tf_saved_model.semantics} { |
| |
| // CHECK: flow.variable [[V:@.+]] mutable dense<1.000000e+00> : tensor<1xf32> |
| // CHECK: flow.variable [[V1:@.+]] mutable dense<1.000000e+00> : tensor<1xf32> |
| // CHECK: func @f(%arg0: tensor<?xf32> {tf_saved_model.index_path = [0]}) -> (tensor<?xf32> {tf_saved_model.index_path = [0]}) attributes {tf_saved_model.exported_names = ["f"]} { |
| // CHECK-NEXT: [[PTR0:%.+]] = flow.variable.address [[V]] : !iree.ptr<tensor<?xf32>> |
| // CHECK-NEXT: [[PTR1:%.+]] = flow.variable.address [[V1]] : !iree.ptr<tensor<?xf32>> |
| // CHECK-NEXT: %[[FALSE:.+]] = constant false |
| // CHECK-NEXT: cond_br %[[FALSE]], ^bb1([[PTR0]] : !iree.ptr<tensor<?xf32>>), ^bb1([[PTR1]] : !iree.ptr<tensor<?xf32>>) |
| // CHECK-NEXT: ^bb1([[PTR:%.+]]: !iree.ptr<tensor<?xf32>>): // 2 preds: ^bb0, ^bb0 |
| // CHECK-NEXT: [[T:%.+]] = flow.variable.load.indirect [[PTR]] : !iree.ptr<tensor<?xf32>> -> tensor<?xf32> |
| // CHECK-NEXT: return [[T]] : tensor<?xf32> |
| |
| "tf_saved_model.global_tensor"() { is_mutable, sym_name = "v", type = tensor<?xf32>, value = dense<1.> : tensor<1xf32> } : () -> () |
| "tf_saved_model.global_tensor"() { is_mutable, sym_name = "v1", type = tensor<?xf32>, value = dense<1.> : tensor<1xf32> } : () -> () |
| func @f(%arg0: tensor<?xf32> {tf_saved_model.index_path = [0]}, %v: tensor<!tf.resource<tensor<?xf32>>> {tf_saved_model.bound_input = @v}, %v1: tensor<!tf.resource<tensor<?xf32>>> {tf_saved_model.bound_input = @v1}) -> (tensor<?xf32> {tf_saved_model.index_path = [0]}) attributes {tf_saved_model.exported_names = ["f"]} { |
| %pred = constant false |
| cond_br %pred, ^bb1(%v : tensor<!tf.resource<tensor<?xf32>>>), ^bb1(%v1 : tensor<!tf.resource<tensor<?xf32>>>) |
| ^bb1(%either: tensor<!tf.resource<tensor<?xf32>>>): |
| %ret = "tf.ReadVariableOp"(%either) : (tensor<!tf.resource<tensor<?xf32>>>) -> tensor<?xf32> |
| return %ret : tensor<?xf32> |
| } |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: module attributes {tf_saved_model.semantics} |
| module attributes {tf_saved_model.semantics} { |
| |
| // CHECK: flow.variable [[V:@.+]] mutable dense<1.000000e+00> : tensor<1xf32> |
| // CHECK: func @f(%arg0: tensor<?xf32> {tf_saved_model.index_path = [0]}) attributes {tf_saved_model.exported_names = ["f"]} { |
| // CHECK-NEXT: [[PTR:%.+]] = flow.variable.address [[V]] : !iree.ptr<tensor<?xf32>> |
| // CHECK-NEXT: br ^bb1([[PTR]], [[PTR]], [[PTR]] : !iree.ptr<tensor<?xf32>>, !iree.ptr<tensor<?xf32>>, !iree.ptr<tensor<?xf32>>) |
| // CHECK-NEXT: ^bb1([[PTR0:%.+]]: !iree.ptr<tensor<?xf32>>, [[PTR1:%.+]]: !iree.ptr<tensor<?xf32>>, [[PTR2:%.+]]: !iree.ptr<tensor<?xf32>>): // 2 preds: ^bb0, ^bb1 |
| // CHECK-NEXT: flow.variable.store.indirect %arg0, [[PTR0]] : tensor<?xf32> -> !iree.ptr<tensor<?xf32>> |
| // CHECK-NEXT: br ^bb1([[PTR1]], [[PTR2]], [[PTR0]] : !iree.ptr<tensor<?xf32>>, !iree.ptr<tensor<?xf32>>, !iree.ptr<tensor<?xf32>>) |
| |
| "tf_saved_model.global_tensor"() { is_mutable, sym_name = "v", type = tensor<?xf32>, value = dense<1.> : tensor<1xf32> } : () -> () |
| func @f(%arg0: tensor<?xf32> {tf_saved_model.index_path = [0]}, %arg1: tensor<!tf.resource<tensor<?xf32>>> {tf_saved_model.bound_input = @v}) attributes {tf_saved_model.exported_names = ["f"]} { |
| br ^bb1(%arg1, %arg1, %arg1 : tensor<!tf.resource<tensor<?xf32>>>, tensor<!tf.resource<tensor<?xf32>>>, tensor<!tf.resource<tensor<?xf32>>>) |
| ^bb1(%0: tensor<!tf.resource<tensor<?xf32>>>, %1: tensor<!tf.resource<tensor<?xf32>>>, %2: tensor<!tf.resource<tensor<?xf32>>>): |
| "tf.AssignVariableOp"(%0, %arg0) : (tensor<!tf.resource<tensor<?xf32>>>, tensor<?xf32>) -> () |
| br ^bb1(%1, %2, %0 : tensor<!tf.resource<tensor<?xf32>>>, tensor<!tf.resource<tensor<?xf32>>>, tensor<!tf.resource<tensor<?xf32>>>) |
| } |
| } |