blob: ca7528d2d46aff6244ab484f77cf8d8f4d0aace9 [file] [log] [blame]
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test scatter update behavior for tensorflow."""
from absl import app
import numpy as np
from pyiree.tf.support import tf_test_utils
import tensorflow.compat.v2 as tf
class ScatterUpdateModule(tf.Module):
def __init__(self):
pass
@tf.function(input_signature=[
tf.TensorSpec([8], tf.int32),
tf.TensorSpec([3, 1], tf.int32),
tf.TensorSpec([3], tf.int32)
])
def scatter_update_1D(self, tensor, indices, updates):
return tf.tensor_scatter_nd_update(tensor, indices, updates)
@tf.function(input_signature=[
tf.TensorSpec([4, 3], tf.int32),
tf.TensorSpec([3, 2], tf.int32),
tf.TensorSpec([3], tf.int32)
])
def scatter_update_2D(self, tensor, indices, updates):
return tf.tensor_scatter_nd_update(tensor, indices, updates)
@tf.function(input_signature=[
tf.TensorSpec([4, 3], tf.int32),
tf.TensorSpec([1, 1], tf.int32),
tf.TensorSpec([1, 3], tf.int32)
])
def scatter_update_2D_slice(self, tensor, indices, updates):
return tf.tensor_scatter_nd_update(tensor, indices, updates)
class ScatterUpdateTest(tf_test_utils.TracedModuleTestCase):
def __init__(self, *args, **kwargs):
super(ScatterUpdateTest, self).__init__(*args, **kwargs)
self._modules = tf_test_utils.compile_tf_module(ScatterUpdateModule)
def test_scatter_update_1D(self):
def scatter_update_1D(module):
tensor = np.ones([8], dtype=np.int32)
indices = np.array([[4], [5], [6]], dtype=np.int32)
updates = np.array([9, 10, 11], dtype=np.int32)
module.scatter_update_1D(tensor, indices, updates)
self.compare_backends(scatter_update_1D, self._modules)
def test_scatter_update_2D(self):
def scatter_update_2D(module):
tensor = np.ones([4, 3], dtype=np.int32)
indices = np.array([[1, 0], [2, 1], [3, 2]], dtype=np.int32)
updates = np.array([2, 5, 8], dtype=np.int32)
module.scatter_update_2D(tensor, indices, updates)
self.compare_backends(scatter_update_2D, self._modules)
def test_scatter_update_2D_slice(self):
def scatter_update_2D_slice(module):
tensor = np.ones([4, 3], dtype=np.int32)
indices = np.array([[1]], dtype=np.int32)
updates = np.array([[2, 3, 4]], dtype=np.int32)
module.scatter_update_2D_slice(tensor, indices, updates)
self.compare_backends(scatter_update_2D_slice, self._modules)
def main(argv):
del argv # Unused
if hasattr(tf, 'enable_v2_behavior'):
tf.enable_v2_behavior()
tf.test.main()
if __name__ == '__main__':
app.run(main)