| // RUN: iree-opt %s --iree-hal-target-backends=cuda \ |
| // RUN: --iree-abi-transformation-pipeline \ |
| // RUN: --iree-flow-transformation-pipeline \ |
| // RUN: --iree-flow-fuse-multi-use \ |
| // RUN: --iree-stream-transformation-pipeline \ |
| // RUN: --iree-hal-configuration-pipeline | \ |
| // RUN: iree-opt --pass-pipeline='builtin.module(hal.executable(hal.executable.variant(iree-llvmgpu-lower-executable-target)))' \ |
| // RUN: --iree-codegen-llvmgpu-enable-transform-dialect-jit=false \ |
| // RUN: --iree-codegen-llvmgpu-use-transform-dialect=%p/softmax_v2_codegen_spec.mlir | \ |
| // RUN: FileCheck %s --check-prefix=CHECK-SHUFFLE |
| |
| // RUN: iree-compile %s --iree-hal-target-backends=cuda \ |
| // RUN: --iree-opt-const-expr-hoisting=false --iree-opt-const-eval=false \ |
| /// Constant JIT'ing must be disabled because the transform-dialect debug |
| /// flags leak to the JIT session, which doesn't know what to do with them. |
| // RUN: --iree-flow-fuse-multi-use \ |
| // RUN: --iree-codegen-llvmgpu-enable-transform-dialect-jit=false \ |
| // RUN: --iree-codegen-llvmgpu-use-transform-dialect=%p/softmax_v2_codegen_spec.mlir | \ |
| // RUN: iree-run-module --module=- --function=softmax --device=cuda | \ |
| // RUN: FileCheck %s |
| |
| !tmp_tensor_t = tensor<16x128xf32> |
| !in_tensor_t = tensor<16x128x128xf32> |
| !out_tensor_t = tensor<16x128x128xf32> |
| |
| // Compilation checks that shuffles are produced. |
| // CHECK-SHUFFLE: gpu.shuffle xor |
| |
| // Execution only checks that @softmax runs. |
| // CHECK: EXEC @softmax |
| // CHECK: 16x128x128xf32=[ |
| // CHECK-SAME: [0.0078125 0.0078125 0.0078125 0.0078125 |
| |
| func.func @softmax() -> !out_tensor_t { |
| %cst_0 = arith.constant 0.0 : f32 |
| %cst_1 = arith.constant 1.0 : f32 |
| %cst_min = arith.constant -3.40282347E+38 : f32 |
| %input = arith.constant dense<5.000000e+00> : !out_tensor_t |
| util.optimization_barrier %input : !in_tensor_t |
| |
| %softmax = flow.dispatch.region[] -> (!out_tensor_t) { |
| %input_max_empty = tensor.empty() : !tmp_tensor_t |
| %input_max_filled = linalg.fill ins(%cst_min : f32) |
| outs(%input_max_empty : !tmp_tensor_t) -> !tmp_tensor_t |
| %input_max = linalg.generic |
| {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| affine_map<(d0, d1, d2) -> (d0, d1)>], |
| iterator_types = ["parallel", "parallel", "reduction"]} |
| ins(%input : !in_tensor_t) |
| outs(%input_max_filled : !tmp_tensor_t) { |
| ^bb0(%arg0: f32, %arg1: f32): |
| %max = arith.maximumf %arg0, %arg1 : f32 |
| linalg.yield %max : f32 |
| } -> !tmp_tensor_t |
| |
| // This has been fused manually to avoid the fusion on tensors pass and reduce noise atm. |
| %exps_empty = tensor.empty() : !out_tensor_t |
| %exps_sum_empty = tensor.empty() : !tmp_tensor_t |
| %exps_sum_filled = linalg.fill ins(%cst_0 : f32) |
| outs(%exps_sum_empty : !tmp_tensor_t) -> !tmp_tensor_t |
| %exps, %exps_sum = linalg.generic |
| {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| affine_map<(d0, d1, d2) -> (d0, d1)>, |
| affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| affine_map<(d0, d1, d2) -> (d0, d1)>], |
| iterator_types = ["parallel", "parallel", "reduction"]} |
| ins(%input, %input_max : !in_tensor_t, !tmp_tensor_t) |
| outs(%exps_empty, %exps_sum_filled : !out_tensor_t, !tmp_tensor_t) { |
| ^bb0(%arg0: f32, %arg1: f32, %arg2: f32, %arg3: f32): |
| %sub = arith.subf %arg0, %arg1 : f32 |
| %exp = math.exp %sub : f32 |
| %add = arith.addf %exp, %arg3 : f32 |
| linalg.yield %exp, %add : f32, f32 |
| } -> (!out_tensor_t, !tmp_tensor_t) |
| |
| %res_empty = tensor.empty() : !out_tensor_t |
| %res = linalg.generic |
| {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| affine_map<(d0, d1, d2) -> (d0, d1)>, |
| affine_map<(d0, d1, d2) -> (d0, d1, d2)>], |
| iterator_types = ["parallel", "parallel", "parallel"]} |
| ins(%exps, %exps_sum : !out_tensor_t, !tmp_tensor_t) |
| outs(%res_empty : !out_tensor_t) { |
| ^bb0(%arg0: f32, %arg1: f32, %arg2: f32): |
| // %10 = arith.divf %cst_1, %arg1 : f32 |
| // %11 = arith.mulf %arg0, %10 : f32 |
| %div = arith.divf %arg0, %arg1 : f32 |
| linalg.yield %div : f32 |
| } -> !out_tensor_t |
| flow.return %res : !out_tensor_t |
| } |
| return %softmax: !out_tensor_t |
| } |