blob: 42ab94112399bb159e4526b44d82b6cab1ca3d25 [file] [log] [blame]
func.func @conv() {
%input = util.unfoldable_constant dense<
[[[[6.0, 7.5, 0.0, 1.5],
[1.5, 3.5, 4.5, 2.0],
[3.0, 6.0, 0.5, 3.0]],
[[3.5, 7.0, 2.5, 6.5],
[4.0, 4.5, 8.0, 2.5],
[7.5, 7.5, 0.0, 1.5]],
[[7.0, 3.5, 0.0, 0.5],
[4.5, 0.0, 5.0, 1.5],
[5.5, 1.0, 0.0, 0.0]]]]>
: tensor<1x3x3x4xf32>
%filter = util.unfoldable_constant dense<
[[[[2.0, 2.5, 2.5, 3.0, 4.0, 2.0, 0.5, 2.0, 4.5, 5.0, 5.0, 4.0, 0.5, 0.5, 3.5, 4.5,
4.5, 1.5, 3.0, 3.5, 1.0, 0.0, 1.5, 2.5, 4.5, 5.0, 2.0, 2.0, 3.0, 2.0, 2.0, 1.5],
[2.0, 2.0, 4.0, 2.0, 1.5, 5.0, 3.5, 2.5, 2.5, 0.0, 0.5, 2.5, 4.5, 1.5, 0.0, 2.5,
0.0, 0.5, 1.0, 2.0, 1.0, 0.0, 1.5, 1.0, 5.0, 0.0, 3.5, 2.5, 4.5, 0.0, 5.0, 1.0],
[5.0, 3.5, 1.0, 4.5, 1.0, 1.5, 1.5, 1.0, 1.5, 2.0, 0.5, 1.0, 4.5, 5.0, 0.5, 2.0,
5.0, 3.0, 4.0, 1.0, 1.5, 0.0, 0.0, 3.0, 0.0, 3.0, 1.5, 5.0, 1.5, 4.0, 4.0, 4.0],
[1.0, 1.5, 1.0, 0.0, 4.0, 4.0, 1.5, 4.0, 5.0, 1.0, 4.0, 2.0, 1.5, 0.0, 2.0, 1.5,
3.0, 4.5, 4.0, 0.0, 4.0, 2.5, 4.5, 0.0, 4.5, 3.0, 2.5, 1.5, 0.5, 4.0, 0.0, 2.0]],
[[4.5, 3.0, 2.5, 3.5, 4.0, 4.0, 4.5, 1.0, 4.0, 3.0, 3.0, 4.5, 0.5, 3.0, 4.0, 4.0,
1.5, 1.0, 1.5, 5.0, 3.0, 1.5, 3.0, 2.5, 3.5, 0.0, 4.0, 2.0, 5.0, 3.0, 2.5, 4.0],
[1.0, 1.5, 4.5, 3.5, 2.5, 1.5, 2.0, 2.5, 1.5, 1.5, 3.5, 4.5, 4.5, 4.5, 3.5, 1.5,
5.0, 1.0, 1.5, 4.5, 5.0, 3.5, 3.5, 2.5, 0.5, 1.0, 1.0, 4.0, 0.5, 2.5, 4.0, 2.0],
[0.0, 1.0, 2.5, 2.5, 0.0, 4.0, 0.5, 0.5, 0.0, 1.5, 4.0, 4.0, 2.0, 2.0, 0.0, 4.5,
1.5, 3.5, 1.5, 1.0, 0.5, 0.5, 1.0, 0.5, 2.0, 1.0, 2.5, 2.5, 2.5, 1.0, 2.5, 3.5],
[3.5, 3.0, 0.5, 3.0, 3.5, 1.0, 1.5, 0.5, 4.5, 2.5, 4.5, 4.5, 1.0, 0.0, 4.5, 0.5,
4.5, 5.0, 0.0, 3.0, 0.0, 5.0, 2.0, 4.0, 2.0, 1.5, 1.5, 4.0, 4.0, 3.5, 0.0, 1.5]]],
[[[4.0, 3.5, 3.5, 5.0, 0.5, 4.0, 2.0, 3.5, 0.0, 2.0, 4.5, 0.0, 5.0, 3.0, 2.0, 1.0,
2.0, 3.0, 1.5, 5.0, 1.5, 3.5, 4.0, 2.5, 0.0, 4.0, 2.5, 2.0, 3.5, 5.0, 5.0, 2.0],
[0.5, 1.5, 1.5, 4.5, 1.0, 2.5, 1.0, 1.5, 2.5, 5.0, 3.5, 1.0, 3.5, 0.5, 3.0, 5.0,
2.5, 0.0, 0.0, 5.0, 1.5, 5.0, 0.5, 5.0, 4.5, 4.5, 3.0, 3.0, 3.5, 4.0, 4.0, 3.5],
[0.0, 4.0, 3.0, 4.0, 4.5, 4.0, 1.5, 3.0, 0.5, 3.5, 2.0, 4.5, 1.0, 0.0, 4.0, 1.0,
3.5, 4.0, 2.0, 2.0, 0.5, 3.5, 3.0, 4.5, 2.0, 0.5, 2.5, 4.5, 3.5, 0.5, 1.5, 2.5],
[3.5, 1.5, 3.0, 3.0, 3.5, 4.5, 0.5, 4.5, 3.0, 0.0, 1.5, 4.0, 2.0, 0.5, 2.0, 2.5,
0.0, 1.5, 5.0, 0.5, 2.0, 2.0, 2.0, 0.0, 0.0, 5.0, 4.0, 2.0, 3.0, 4.5, 1.5, 1.5]],
[[1.0, 0.5, 5.0, 1.0, 0.5, 1.5, 2.0, 5.0, 0.5, 0.5, 0.0, 3.5, 4.0, 5.0, 2.0, 1.5,
2.5, 3.0, 1.5, 1.0, 4.5, 4.0, 0.5, 2.0, 5.0, 0.0, 4.0, 1.5, 4.5, 2.5, 2.5, 0.5],
[3.5, 4.0, 3.0, 2.0, 3.5, 1.5, 2.5, 1.5, 3.0, 2.0, 3.5, 1.5, 0.0, 2.5, 4.5, 1.5,
3.5, 2.5, 2.5, 4.0, 0.0, 4.0, 1.5, 3.0, 4.5, 5.0, 1.5, 1.0, 3.5, 0.0, 1.5, 5.0],
[0.0, 1.5, 3.0, 0.5, 4.5, 1.0, 4.5, 2.0, 4.5, 0.5, 1.5, 1.0, 2.0, 4.5, 3.5, 2.0,
4.5, 2.0, 0.5, 1.0, 3.5, 1.0, 1.5, 4.5, 5.0, 3.5, 5.0, 3.0, 3.0, 1.0, 5.0, 1.5],
[3.0, 0.0, 5.0, 4.0, 0.0, 5.0, 3.5, 3.0, 2.5, 4.5, 3.0, 2.5, 1.0, 3.5, 0.5, 4.5,
1.0, 1.0, 2.5, 3.0, 2.0, 1.0, 1.0, 0.5, 0.0, 4.5, 0.0, 1.0, 4.0, 1.5, 5.0, 0.0]]]]>
: tensor<2x2x4x32xf32>
%0 = "mhlo.convolution"(%input, %filter) {batch_group_count = 1 : i64,
dimension_numbers = #mhlo.conv<raw
input_batch_dimension = 0,
input_feature_dimension = 3,
input_spatial_dimensions = [1, 2],
kernel_input_feature_dimension = 2,
kernel_output_feature_dimension = 3,
kernel_spatial_dimensions = [0, 1],
output_batch_dimension = 0,
output_feature_dimension = 3,
output_spatial_dimensions = [1, 2]
>, feature_group_count = 1 : i64, padding = dense<0> : tensor<2x2xi64>, rhs_dilation = dense<1> : tensor<2xi64>, window_strides = dense<1> : tensor<2xi64>} : (tensor<1x3x3x4xf32>, tensor<2x2x4x32xf32>) -> tensor<1x2x2x32xf32>
check.expect_almost_eq_const(%0, dense<
[[[[113.25, 127.0, 198.0, 173.25, 159.5, 190.75, 135.5, 160.0,
169.5, 130.0, 173.75, 174.5, 158.5, 136.75, 159.75, 177.75,
164.5, 122.25, 116.0, 168.0, 124.75, 144.0, 113.5, 159.0,
208.0, 186.5, 190.5, 158.5, 213.75, 140.5, 206.75, 135.25],
[129.75, 147.25, 181.25, 181.75, 142.5, 161.75, 117.75, 153.25,
119.5, 128.75, 149.25, 171.0, 152.5, 142.5, 166.0, 122.25,
177.75, 142.75, 116.5, 170.0, 117.5, 176.75, 116.75, 162.25,
161.25, 135.0, 145.5, 163.25, 190.5, 138.25, 162.5, 146.75]],
[[111.75, 115.75, 173.5, 158.25, 122.5, 187.25, 129.0, 142.5,
142.25, 109.0, 175.75, 158.5, 172.75, 146.25, 122.25, 157.25,
157.5, 141.25, 104.25, 151.25, 136.25, 122.0, 127.75, 125.75,
180.5, 131.25, 168.75, 151.5, 180.75, 152.75, 193.5, 128.75],
[138.25, 133.75, 157.5, 168.5, 131.0, 149.75, 115.25, 130.75,
114.5, 107.25, 127.75, 163.75, 153.5, 149.25, 133.5, 114.0,
164.75, 120.75, 116.0, 149.5, 127.5, 113.5, 116.0, 129.75,
126.75, 94.25, 135.0, 157.75, 158.75, 142.0, 158.75, 126.25]]]]>
: tensor<1x2x2x32xf32>) : tensor<1x2x2x32xf32>
return
}
func.func @depthwise_conv() {
%input = util.unfoldable_constant dense<
[[[[6.0, 7.5, 0.0, 1.5, 1.5, 3.5, 4.5, 2.0, 3.0, 6.0, 0.5, 3.0, 3.5, 7.0, 2.5, 6.5],
[4.0, 4.5, 8.0, 2.5, 7.5, 7.5, 0.0, 1.5, 7.0, 3.5, 0.0, 0.5, 4.5, 0.0, 5.0, 1.5],
[5.5, 1.0, 0.0, 0.0, 2.0, 2.5, 3.0, 4.0, 7.5, 2.0, 4.5, 5.0, 0.5, 0.5, 3.5, 4.5],
[1.5, 3.0, 5.5, 7.0, 0.0, 7.0, 1.5, 6.0, 5.0, 5.5, 2.0, 3.0, 2.0, 7.5, 1.5, 6.0]]]]>
: tensor<1x1x4x16xf32>
%filter = util.unfoldable_constant dense<
[[[[2.0, 2.0, 4.0, 2.0, 1.5, 5.0, 3.5, 2.5, 2.5, 0.0, 0.5, 2.5, 4.5, 1.5, 0.0, 2.5]]]]>
: tensor<1x1x1x16xf32>
%0 = "mhlo.convolution"(%input, %filter) {batch_group_count = 1 : i64,
dimension_numbers = #mhlo.conv<raw
input_batch_dimension = 0,
input_feature_dimension = 3,
input_spatial_dimensions = [1, 2],
kernel_input_feature_dimension = 2,
kernel_output_feature_dimension = 3,
kernel_spatial_dimensions = [0, 1],
output_batch_dimension = 0,
output_feature_dimension = 3,
output_spatial_dimensions = [1, 2]
>, feature_group_count = 16 : i64, padding = dense<0> : tensor<2x2xi64>, rhs_dilation = dense<1> : tensor<2xi64>, window_strides = dense<1> : tensor<2xi64>} : (tensor<1x1x4x16xf32>, tensor<1x1x1x16xf32>) -> tensor<1x1x4x16xf32>
check.expect_almost_eq_const(%0, dense<
[[[[12.0, 15.0, 0.0, 3.0, 2.25, 17.5, 15.75, 5.0, 7.5, 0.0, 0.25, 7.5, 15.75, 10.5, 0.0, 16.25],
[8.0, 9.0, 32.0, 5.0, 11.25, 37.5, 0.0, 3.75, 17.5, 0.0, 0.0, 1.25, 20.25, 0.0, 0.0, 3.75],
[11.0, 2.0, 0.0, 0.0, 3.0, 12.5, 10.5, 10.0, 18.75, 0.0, 2.25, 12.5, 2.25, 0.75, 0.0, 11.25],
[3.0, 6.0, 22.0, 14.0, 0.0, 35.0, 5.25, 15.0, 12.5, 0.0, 1.0, 7.5, 9.0, 11.25, 0.0, 15.0]]]]>
: tensor<1x1x4x16xf32>) : tensor<1x1x4x16xf32>
return
}