Initialize silicon_creator crypto library
Copy P-256 ECDSA code from otbn/code-snippets and add initial READMEs.
Signed-off-by: Jade Philipoom <jadep@google.com>
diff --git a/sw/device/silicon_creator/lib/crypto/README.md b/sw/device/silicon_creator/lib/crypto/README.md
new file mode 100644
index 0000000..0669b53
--- /dev/null
+++ b/sw/device/silicon_creator/lib/crypto/README.md
@@ -0,0 +1,5 @@
+# Library of Cryptographic Implementations
+
+This folder contains implementations of various cryptographic algorithms. Each
+algorithm has its own, self-contained subfolder, and can be used independently
+of the others. See algorithms' individual READMEs for details.
diff --git a/sw/device/silicon_creator/lib/crypto/ecdsa-p256/LICENSE.dcrypto b/sw/device/silicon_creator/lib/crypto/ecdsa-p256/LICENSE.dcrypto
new file mode 100644
index 0000000..d3295c3
--- /dev/null
+++ b/sw/device/silicon_creator/lib/crypto/ecdsa-p256/LICENSE.dcrypto
@@ -0,0 +1,27 @@
+Copyright 2010 The Chromium OS Authors. All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+* Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+* Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the following disclaimer
+in the documentation and/or other materials provided with the
+distribution.
+* Neither the name of Google Inc. nor the names of its
+contributors may be used to endorse or promote products derived from
+this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/sw/device/silicon_creator/lib/crypto/ecdsa-p256/README.md b/sw/device/silicon_creator/lib/crypto/ecdsa-p256/README.md
new file mode 100644
index 0000000..37866bb
--- /dev/null
+++ b/sw/device/silicon_creator/lib/crypto/ecdsa-p256/README.md
@@ -0,0 +1,4 @@
+# ECDSA with NIST P-256
+
+ECDSA implementation with the P-256 curve, following [FIPS
+186-4](https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf).
diff --git a/sw/device/silicon_creator/lib/crypto/ecdsa-p256/p256.s b/sw/device/silicon_creator/lib/crypto/ecdsa-p256/p256.s
new file mode 100644
index 0000000..c3ec2da
--- /dev/null
+++ b/sw/device/silicon_creator/lib/crypto/ecdsa-p256/p256.s
@@ -0,0 +1,1899 @@
+/* Copyright lowRISC Contributors.
+ * Copyright 2016 The Chromium OS Authors. All rights reserved.
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE.dcrypto file.
+ *
+ * Derived from code in
+ * https://chromium.googlesource.com/chromiumos/platform/ec/+/refs/heads/cr50_stab/chip/g/dcrypto/dcrypto_p256.c
+ */
+
+.globl p256_isoncurve
+.globl p256_scalar_mult
+.globl p256_base_mult
+.globl p256_sign
+.globl p256_verify
+.globl proj_add
+
+.text
+
+/**
+ * 256-bit modular multiplication based on Barrett reduction algorithm.
+ *
+ * Returns c = a * b mod p
+ *
+ * Expects two 256 bit operands, 256 bit modulus and pre-computed parameter u
+ * for Barrett reduction (usually greek mu in literature). u is expected
+ * without the leading 1 at bit 256. u has to be pre-computed as
+ * u = floor(2^512/p).
+ * This guarantees that u > 2^256, however, in order for u to be at
+ * most 2^257-1, it has to be ensured that p >= 2^255 + 1.
+ *
+ * This implementation mostly follows the description in the
+ * "Handbook of Applied Cryptography" in Algorithm 14.42.
+ * Differences:
+ * - This implementation incorporates a multiplication before the reduction.
+ * Therefore it expects two operands (a, b) instead of a wider integer x.
+ * - The computation of q2 ignores the MSbs of q1 and u to allow using
+ * a 256x256 bit multiplication. This is compensated later by
+ * individual (conditional) additions.
+ * - The truncations in step 2 of HAC 14.42 in the form of (... mod b^(k+1) )
+ * are not implemented here and the full register width is used. This
+ * allows to omit computation of r1 (since r1=x) and step 3 of HAC 14.42
+ * - There is only a single conditional subtraction of the modulus at the end
+ *
+ * Note that this implementation is targeted and tested to be used with modulus
+ * and Barrett constant of the P-256 underlying finite field only. For a
+ * generic modulus a 2nd conditional subtraction of the modulus has to be
+ * added or the modulus has to be in a range such that it can be mathematically
+ * proven that a single subtraction is sufficient.
+ *
+ * Flags: Flags have no meaning beyond the scope of this subroutine.
+ *
+ * @param[in] w24: a, first 256 bit operand (a < p)
+ * @param[in] w25: b, second 256 bit operand with (b < p)
+ * @param[in] w29: p, modulus of P-256 underlying finite field
+ * @param[in] w28: u, lower 256 bit of Barrett constant for curve P-256
+ * @param[in] w31: all-zero
+ * @param[in] MOD: p, modulus of P-256 underlying finite field
+ * @param[out] w19: c, result
+ *
+ * clobbered registers: w19, w20, w21, w22, w23, w24, w25
+ * clobbered flag groups: FG0
+ */
+mod_mul_256x256:
+ /* Compute the integer product of the operands x = a * b
+ x = [w20, w19] = a * b = w24 * w25
+ => max. length x: 512 bit */
+ bn.mulqacc.z w24.0, w25.0, 0
+ bn.mulqacc w24.1, w25.0, 64
+ bn.mulqacc.so w19.L, w24.0, w25.1, 64
+ bn.mulqacc w24.2, w25.0, 0
+ bn.mulqacc w24.1, w25.1, 0
+ bn.mulqacc w24.0, w25.2, 0
+ bn.mulqacc w24.3, w25.0, 64
+ bn.mulqacc w24.2, w25.1, 64
+ bn.mulqacc w24.1, w25.2, 64
+ bn.mulqacc.so w19.U, w24.0, w25.3, 64
+ bn.mulqacc w24.3, w25.1, 0
+ bn.mulqacc w24.2, w25.2, 0
+ bn.mulqacc w24.1, w25.3, 0
+ bn.mulqacc w24.3, w25.2, 64
+ bn.mulqacc.so w20.L, w24.2, w25.3, 64
+ bn.mulqacc.so w20.U, w24.3, w25.3, 0
+ bn.add w20, w20, w31
+
+ /* Store correction factor to compensate for later neglected MSb of x.
+ x is 512 bit wide and therefore the 255 bit right shifted version q1
+ (below) contains 257 bit. Bit 256 of q1 is neglected to allow using a
+ 256x256 multiplier. For the MSb of x being set we temporary store u
+ (or zero) here to be used in a later constant time correction of a
+ multiplication with u. Note that this requires the MSb flag being carried
+ over from the multiplication routine. */
+ bn.sel w22, w28, w31, M
+
+ /* Compute q1' = q1[255:0] = x >> 255
+ w21 = q1' = [w20, w19] >> 255 */
+ bn.rshi w21, w20, w19 >> 255
+
+ /* Compute q2 = q1*u
+ Instead of full q2 (which would be up to 514 bits) we ignore the MSb of u
+ and the MSb of q1 and correct this later. This allows using a 256x256
+ multiplier.
+ => max. length q2': 512 bit
+ q2' = q1[255:0]*u[255:0] = [w20, w19] = w21 * w28 */
+ bn.mulqacc.z w21.0, w28.0, 0
+ bn.mulqacc w21.1, w28.0, 64
+ bn.mulqacc.so w23.L, w21.0, w28.1, 64
+ bn.mulqacc w21.2, w28.0, 0
+ bn.mulqacc w21.1, w28.1, 0
+ bn.mulqacc w21.0, w28.2, 0
+ bn.mulqacc w21.3, w28.0, 64
+ bn.mulqacc w21.2, w28.1, 64
+ bn.mulqacc w21.1, w28.2, 64
+ bn.mulqacc.so w23.U, w21.0, w28.3, 64
+ bn.mulqacc w21.3, w28.1, 0
+ bn.mulqacc w21.2, w28.2, 0
+ bn.mulqacc w21.1, w28.3, 0
+ bn.mulqacc w21.3, w28.2, 64
+ bn.mulqacc.so w24.L, w21.2, w28.3, 64
+ bn.mulqacc.so w24.U, w21.3, w28.3, 0
+ bn.add w20, w20, w31
+
+ /* q3 = q2 >> 257
+ In this step, the compensation for the neglected MSbs of q1 and u is
+ carried out underway. To add them in the q2 domain, they would have to be
+ left shifted by 256 bit first. To directly add them we first shift q2' by
+ 256 bit to the right (by dropping the lower 256 bit), perform the
+ additions, and shift the result another bit to the right.
+
+ /* w25 = q1[256] = x[511:256] >> 255 */
+ bn.rshi w25, w31, w20 >> 255
+
+ /* compensate for neglected MSB of u, by adding full q1
+ this is unconditional since MSB of u is always 1
+ [w25, w24] = q2'' <= q2'[511:256] + q1 = [w25, w24] <= w24 + [w25, w21] */
+ bn.add w24, w24, w21
+ bn.addc w25, w25, w31
+
+ /* compensate for neglected MSB of q1, by conditionally adding u */
+ /* [w25, w24] = q2''' <= q2'' + [0 or u] = [w25, w24] + w22 */
+ bn.add w24, w24, w22
+ bn.addc w25, w25, w31
+
+ /* q3 = w21 = q2''' >> 1 */
+ bn.rshi w21, w25, w24 >> 1
+
+ /* [w23, w22] <= q3 * p */
+ bn.mulqacc.z w29.0, w21.0, 0
+ bn.mulqacc w29.1, w21.0, 64
+ bn.mulqacc.so w22.L, w29.0, w21.1, 64
+ bn.mulqacc w29.2, w21.0, 0
+ bn.mulqacc w29.1, w21.1, 0
+ bn.mulqacc w29.0, w21.2, 0
+ bn.mulqacc w29.3, w21.0, 64
+ bn.mulqacc w29.2, w21.1, 64
+ bn.mulqacc w29.1, w21.2, 64
+ bn.mulqacc.so w22.U, w29.0, w21.3, 64
+ bn.mulqacc w29.3, w21.1, 0
+ bn.mulqacc w29.2, w21.2, 0
+ bn.mulqacc w29.1, w21.3, 0
+ bn.mulqacc w29.3, w21.2, 64
+ bn.mulqacc.so w23.L, w29.2, w21.3, 64
+ bn.mulqacc.so w23.U, w29.3, w21.3, 0
+ bn.add w23, w23, w31
+
+ /* We compute the final remainder r by subtracting the estimate q3 from x.
+ In the generic algorithm, r is already the reduced result or it is off by
+ either p or 2p. For the special case of the modulus of P-256 it can be
+ shown that r can only be off by max p. Therefore, only a single
+ conditional correction is required.
+ [w20, w22] = r <= [w20, w19] - [w23, w22] = x - q3*p */
+ bn.sub w22, w19, w22
+ bn.subb w20, w20, w23
+
+ /* r cannot be wider than 257 bit. Therefore it is r > p if bit 256 of r is
+ set and we need to subtract the modulus */
+ bn.sel w21, w29, w31, L
+ bn.sub w21, w22, w21
+
+ /* this performs the correction in case r is only 256 bit long but still
+ greater than the modulus */
+ bn.addm w19, w21, w31
+
+ ret
+
+
+/**
+ * Checks if a point is a valid curve point on curve P-256 (secp256r1)
+ *
+ * Returns r = x^3 + ax + b mod p
+ * and s = y^2 mod p
+ * with x,y being the affine coordinates of the curve point
+ * a, b and p being the domain parameters of P-256
+ *
+ * This routine checks if a point with given x- and y-coordinate is a valid
+ * curve point on P-256.
+ * The routine checks whether the coordinates are a solution of the
+ * Weierstrass equation y^2 = x^3 + ax + b mod p.
+ * The routine makes use of the property that the domain parameter 'a' can be
+ * written as a=-3 for the P-256 curve, hence the routine is limited to P-256.
+ * The routine does not return a boolean result but computes the left side
+ * and the right sight of the Weierstrass equation and leaves the final
+ * comparison to the caller.
+ * The routine runs in constant time.
+ *
+ * Flags: Flags have no meaning beyond the scope of this subroutine.
+ *
+ * @param[in] dmem[12]: dptr_r, pointer to dmem location where right
+ * side result r will be stored
+ * @param[in] dmem[16]: dptr_s, pointer to dmem location where left side
+ * result s will be stored
+ * @param[in] dmem[20]: dptr_x, pointer to dmem location containing affine
+ * x-coordinate of input point
+ * @param[in] dmem[24]: dptr_y, pointer to dmem location containing affine
+ * y-coordinate of input point
+ *
+ * clobbered registers: x2, x3, x19, x20, w0, w19 to w25
+ * clobbered flag groups: FG0
+ */
+p256_isoncurve:
+
+ /* setup all-zero reg */
+ bn.xor w31, w31, w31
+
+ /* load dmem pointer to signature r in dmem: x19 <= dptr_r = dmem[12] */
+ la x19, dptr_r
+ lw x19, 0(x19)
+
+ /* load dmem pointer to signature s in dmem: x20 <= dptr_s = dmem[16] */
+ la x20, dptr_s
+ lw x20, 0(x20)
+
+ /* setup modulus p and Barrett constant u
+ MOD <= w29 <= dmem[p256_p] = p; w28 <= dmem[p256_u_p] = u_p */
+ li x2, 29
+ la x3, p256_p
+ bn.lid x2, 0(x3)
+ bn.wsrw 0, w29
+ li x2, 28
+ la x3, p256_u_p
+ bn.lid x2, 0(x3)
+
+ /* load domain parameter b from dmem
+ w27 <= b = dmem[p256_b] */
+ li x2, 27
+ la x3, p256_b
+ bn.lid x2, 0(x3)
+
+ /* load affine y-coordinate of curve point from dmem
+ w26 <= dmem[dptr_y] = dmem[24] */
+ la x3, dptr_y
+ lw x3, 0(x3)
+ li x2, 24
+ bn.lid x2, 0(x3)
+
+ /* w19 <= y^2 = w24*w24 */
+ bn.mov w25, w24
+ jal x1, mod_mul_256x256
+
+ /* store left side result: dmem[dptr_s] <= w0 = y^2 mod p */
+ li x2, 19
+ bn.sid x2, 0(x20)
+
+ /* load affine x-coordinate of curve point from dmem
+ w26 <= dmem[dptr_x] = dmem[20] */
+ la x3, dptr_x
+ lw x3, 0(x3)
+ li x2, 26
+ bn.lid x2, 0(x3)
+
+ /* w19 <= x^2 = w26*w26 */
+ bn.mov w25, w26
+ bn.mov w24, w26
+ jal x1, mod_mul_256x256
+
+ /* w19 = x^3 <= x^2 * x = w25*w24 = w26*w19 */
+ bn.mov w25, w19
+ bn.mov w24, w26
+ jal x1, mod_mul_256x256
+
+ /* for curve P-256, 'a' can be written as a = -3, therefore we subtract
+ x three times from x^3.
+ w19 = x^3 + ax <= x^3 - 3x mod p */
+ bn.subm w19, w19, w26
+ bn.subm w19, w19, w26
+ bn.subm w19, w19, w26
+
+ /* w24 <= x^3 + ax + b mod p = w19 + w27 mod p */
+ bn.addm w19, w19, w27
+
+ /* store right side result: dmem[dptr_s] <= w19 = x^3 + ax + b mod p */
+ li x2, 19
+ bn.sid x2, 0(x19)
+
+ ret
+
+
+/**
+ * P-256 point addition in projective coordinates
+ *
+ * returns R = (x_r, y_r, z_r) <= P+Q = (x_p, y_p, z_p) + (x_q, y_q, z_q)
+ * with R, P and Q being valid P-256 curve points
+ * in projective coordinates
+ *
+ * This routine adds two valid P-256 curve points in projective space.
+ * Point addition is performed based on the complete formulas of Bosma and
+ * Lenstra for Weierstrass curves as first published in [1] and
+ * optimized in [2].
+ * The implemented version follows Algorithm 4 of [2] which is an optimized
+ * variant for Weierstrass curves with domain parameter 'a' set to a=-3.
+ * Numbering of the steps below and naming of symbols follows the
+ * terminology of Algorithm 4 of [2].
+ * The routine is limited to P-256 curve points due to:
+ * - fixed a=-3 domain parameter
+ * - usage of a P-256 optimized Barrett multiplication kernel
+ * This routine runs in constant time.
+ *
+ * [1] https://doi.org/10.1006/jnth.1995.1088
+ * [2] https://doi.org/10.1007/978-3-662-49890-3_16
+ *
+ * @param[in] w8: x_p, x-coordinate of input point P
+ * @param[in] w9: y_p, y-coordinate of input point P
+ * @param[in] w10: z_p, z-coordinate of input point P
+ * @param[in] w11: x_q, x-coordinate of input point Q
+ * @param[in] w12: y_q, x-coordinate of input point Q
+ * @param[in] w13: z_q, x-coordinate of input point Q
+ * @param[in] w27: b, curve domain parameter
+ * @param[in] w29: p, modulus, 2^256 > p > 2^255.
+ * @param[in] w28: u, pre-computed Barrett constant (without u[256]/MSb
+ * of u which is always 1 for the allowed range.
+ * @param[in] w31: all-zero.
+ * @param[in] MOD: p, modulus, 2^256 > p > 2^255.
+ * @param[out] w11: x_r, x-coordinate of resulting point R
+ * @param[out] w12: y_r, x-coordinate of resulting point R
+ * @param[out] w13: z_r, x-coordinate of resulting point R
+ *
+ * Flags: Flags have no meaning beyond the scope of this subroutine.
+ *
+ * clobbered registers: w11 to w25
+ * clobbered flag groups: FG0
+ */
+proj_add:
+ /* mapping of parameters to symbols of [2] (Algorithm 4):
+ X1 = x_p; Y1 = y_p; Z1 = z_p; X2 = x_q; Y2 = y_q; Z2 = z_q
+ X3 = x_r; Y3 = y_r; Z3 = z_r */
+
+ /* 1: w14 = t0 <= X1*X2 = w11*w8 */
+ bn.mov w24, w11
+ bn.mov w25, w8
+ jal x1, mod_mul_256x256
+ bn.mov w14, w19
+
+ /* 2: w15 = t1 <= Y1*Y2 = w12*w9 */
+ bn.mov w24, w12
+ bn.mov w25, w9
+ jal x1, mod_mul_256x256
+ bn.mov w15, w19
+
+ /* 3: w16 = t2 <= Z1*Z2 = w13*w10*/
+ bn.mov w24, w13
+ bn.mov w25, w10
+ jal x1, mod_mul_256x256
+ bn.mov w16, w19
+
+ /* 5: w17 = t4 <= X2+Y2 = w11 + w12 */
+ bn.addm w17, w11, w12
+
+ /* 4: w18 = t3 <= X1+Y1 = w8+w9 */
+ bn.addm w18, w8, w9
+
+ /* 6: w19 = t3 <= t3*t4 = w18*w17 */
+ bn.mov w24, w17
+ bn.mov w25, w18
+ jal x1, mod_mul_256x256
+
+ /* 7: w18 = t4 <= t0+t1 = w14+w15 */
+ bn.addm w18, w14, w15
+
+ /* 8: w17 = t3 <= t3 - t4 = w19 - w18 */
+ bn.subm w17, w19, w18
+
+ /* 10: w18 = X3 <= Y2 + Z2 = w12 + w13 */
+ bn.addm w18, w12, w13
+
+ /* 9: w19 = t4 <= Y1 + Z1 = w9 + w10 */
+ bn.addm w19, w9, w10
+
+ /* 11: w18 = t4 <= t4 * X3 = w19 * w18 */
+ bn.mov w24, w18
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+ bn.mov w18, w19
+
+ /* 12: w19 = X3 <= t1 + t2 = w15 + w16 */
+ bn.addm w19, w15, w16
+
+ /* 13: w18 = t4 <= t4 - X3 = w18 + w19 */
+ bn.subm w18, w18, w19
+
+ /* 15: w19 = Y3 <= X2 + Z2 = w11 + w13 */
+ bn.addm w19, w11, w13
+
+ /* 14: w12 = X3 <= X1 + Z1 = w8 + w10 */
+ bn.addm w12, w8, w10
+
+ /* 16: w11 = X3 <= X3 * Y3 = w12 * w19 */
+ bn.mov w24, w19
+ bn.mov w25, w12
+ jal x1, mod_mul_256x256
+ bn.mov w11, w19
+
+ /* 17: w12 = Y3 <= t0 + t2 = w14 + w16 */
+ bn.addm w12, w14, w16
+
+ /* 18: w12 = Y3 <= X3 - Y3 = w11 - w12 */
+ bn.subm w12, w11, w12
+
+ /* 19: w19 = Z3 <= b * t2 = w27 * w16 */
+ bn.mov w24, w27
+ bn.mov w25, w16
+ jal x1, mod_mul_256x256
+
+ /* 20: w11 = X3 <= Y3 -Z3 = w12 - w19 */
+ bn.subm w11, w12, w19
+
+ /* 21: w13 = Z3 <= X3 + X3 = w11 + w11 */
+ bn.addm w13, w11, w11
+
+ /* 22: w11 = X3 <= w11 + w13 = X3 + Z3 */
+ bn.addm w11, w11, w13
+
+ /* 23: w13 = Z3 <= t1 - X3 = w15 - w11 */
+ bn.subm w13, w15, w11
+
+ /* 24: w11 = X3 <= t1 + X3 = w15 + w11 */
+ bn.addm w11, w15, w11
+
+ /* 25: w19 = Y3 <= w27 * w12 = b * Y3 */
+ bn.mov w24, w27
+ bn.mov w25, w12
+ jal x1, mod_mul_256x256
+
+ /* 26: w15 = t1 <= t2 + t2 = w16 + w16 */
+ bn.addm w15, w16, w16
+
+ /* 27: w16 = t2 <= t1 + t2 = w15 + w16 */
+ bn.addm w16, w15, w16
+
+ /* 28: w12 = Y3 <= Y3 - t2 = w19 - w16 */
+ bn.subm w12, w19, w16
+
+ /* 29: w12 = Y3 <= Y3 - t0 = w12 - w14 */
+ bn.subm w12, w12, w14
+
+ /* 30: w15 = t1 <= Y3 + Y3 = w12 + w12 */
+ bn.addm w15, w12, w12
+
+ /* 31: w12 = Y3 <= t1 + Y3 = w15 + w12*/
+ bn.addm w12, w15, w12
+
+ /* 32: w15 = t1 <= t0 + t0 = w14 + w14 */
+ bn.addm w15, w14, w14
+
+ /* 33: w14 = t0 <= t1 + t0 = w15 + w14 */
+ bn.addm w14, w15, w14
+
+ /* 34: w14 = t0 <= t0 - t2 = w14 - w16 */
+ bn.subm w14, w14, w16
+
+ /* 35: w15 = t1 <= t4 * Y3 = w18 * w12 */
+ bn.mov w24, w18
+ bn.mov w25, w12
+ jal x1, mod_mul_256x256
+ bn.mov w15, w19
+
+ /* 36: w16 = t2 <= t0 * Y3 = w14 * w12 */
+ bn.mov w24, w14
+ bn.mov w25, w12
+ jal x1, mod_mul_256x256
+ bn.mov w16, w19
+
+ /* 37: w12 = Y3 <= X3 * Z3 = w11 * w13 */
+ bn.mov w24, w11
+ bn.mov w25, w13
+ jal x1, mod_mul_256x256
+
+ /* 38: w12 = Y3 <= Y3 + t2 = w19 + w16 */
+ bn.addm w12, w19, w16
+
+ /* 39: w19 = X3 <= t3 * X3 = w17 * w11 */
+ bn.mov w24, w17
+ bn.mov w25, w11
+ jal x1, mod_mul_256x256
+
+ /* 40: w11 = X3 <= X3 - t1 = w19 - w15 */
+ bn.subm w11, w19, w15
+
+ /* 41: w13 = Z3 <= t4 * Z3 = w18 * w13 */
+ bn.mov w24, w18
+ bn.mov w25, w13
+ jal x1, mod_mul_256x256
+ bn.mov w13, w19
+
+ /* 42: w19 = t1 <= t3 * t0 = w17 * w14 */
+ bn.mov w24, w17
+ bn.mov w25, w14
+ jal x1, mod_mul_256x256
+
+ /* 43: w13 = Z3 <= Z3 + t1 = w13 + w19 */
+ bn.addm w13, w13, w19
+
+ ret
+
+
+/**
+ * Convert projective coordinates of a P-256 curve point to affine coordinates
+ *
+ * returns P = (x_a, y_a) = (x/z mod p, y/z mod p)
+ * with P being a valid P-256 curve point
+ * x_a and y_a being the affine coordinates of said curve point
+ * x, y and z being a set of projective coordinates of said point
+ * and p being the modulus of the P-256 underlying finite field.
+ *
+ * This routine computes the affine coordinates for a set of projective
+ * coordinates of a valid P-256 curve point. The routine performs the required
+ * divisions by computing the multiplicative modular inverse of the
+ * projective z-coordinate in the underlying finite field of the P-256 curve.
+ * For inverse computation Fermat's little theorem is used, i.e.
+ * we compute z^-1 = z^(p-2) mod p.
+ * For exponentiation a 27 step addition chain is used.
+ * This addition chain is (presumably?) the shortest addition chain known as
+ * of today for the exponent exp = p - 2 = 2^256 - 2^224 + 2^6 + 2^64 - 1 - 2.
+ * Origin of the chain can not fully be traced. [1] attributes it to a specific
+ * patch to OpenSLL. The same addition chain is used in the OpenSSL and
+ * BoringSSL crypto libraries.
+ * This routine runs in constant time.
+ *
+ * [1] https://doi.org/10.1007/s13389-014-0090-x
+ * https://eprint.iacr.org/2013/816.pdf
+ *
+ * Flags: When leaving this subroutine, the M, L and Z flags of FG0 depend on
+ * the computed affine y-coordinate.
+ *
+ * @param[in] w8: x, x-coordinate of curve point (projective)
+ * @param[in] w9: y, y-coordinate of curve point (projective)
+ * @param[in] w10: z, z-coordinate of curve point (projective)
+ * @param[in] w29: p, modulus, 2^256 > p > 2^255.
+ * @param[in] w28: u, pre-computed Barrett constant (without u[256]/MSb
+ * of u which is always 1 for the allowed range.
+ * @param[in] MOD: p, modulus of the finite field of P-256
+ * @param[out] w11: x_a, x-coordinate of curve point (affine)
+ * @param[out] w12: y_a, y-coordinate of curve point (affine)
+ *
+ * clobbered registers: w10 to w19, w24, w25
+ * clobbered flag groups: FG0
+ */
+proj_to_affine:
+
+ /* 1: exp = 0x1 */
+ bn.addm w10, w10, w31
+
+ /* 2: exp = 0x2 = 2*0x1 */
+ bn.mov w24, w10
+ bn.mov w25, w10
+ jal x1, mod_mul_256x256
+
+ /* 3: exp = 0x3 = 0x2+0x1 */
+ bn.mov w24, w19
+ bn.mov w25, w10
+ jal x1, mod_mul_256x256
+ bn.mov w12, w19
+
+ /* 4: exp = 0x6 = 2*0x3 */
+ bn.mov w24, w19
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+
+ /* 5: exp = 0xc = 2*0x6 */
+ bn.mov w24, w19
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+
+ /* 6: exp = 0xf = 0xc+0x3 */
+ bn.mov w24, w19
+ bn.mov w25, w12
+ jal x1, mod_mul_256x256
+ bn.mov w13, w19
+
+ /* 7: exp = 0xf0 = 16*0xf */
+ loopi 4, 4
+ bn.mov w24, w19
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+ nop
+
+ /* 8: exp = 0xff = 0xf0+0xf */
+ bn.mov w24, w19
+ bn.mov w25, w13
+ jal x1, mod_mul_256x256
+ bn.mov w14, w19
+
+ /* 9: exp = 0xff00 = 256*0xff */
+ loopi 8, 4
+ bn.mov w24, w19
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+ nop
+
+ /* 10: exp = 0xffff = 0xff00+0xff */
+ bn.mov w24, w19
+ bn.mov w25, w14
+ jal x1, mod_mul_256x256
+ bn.mov w15, w19
+
+ /* 11: exp = 0xffff0000 = 2^16*0xffff */
+ loopi 16, 4
+ bn.mov w24, w19
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+ nop
+
+ /* 12: exp = 0xffffffff = 0xffff0000+0xffff */
+ bn.mov w24, w19
+ bn.mov w25, w15
+ jal x1, mod_mul_256x256
+ bn.mov w16, w19
+
+ /* 13: exp = 0xffffffff00000000 = 2^32*0xffffffff */
+ loopi 32, 4
+ bn.mov w24, w19
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+ nop
+ bn.mov w17, w19
+
+ /* 14: exp = 0xffffffff00000001 = 0xffffffff00000000+0x1 */
+ bn.mov w24, w10
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+
+ /* 15: exp =
+ 0xffffffff00000001000000000000000000000000000000000000000000000000
+ = 2^192*0xffffffff00000001 */
+ loopi 192, 4
+ bn.mov w24, w19
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+ nop
+ bn.mov w18, w19
+
+ /* 16: exp = 0xffffffffffffffff = 0xffffffff00000000+0xffffffff */
+ bn.mov w24, w17
+ bn.mov w25, w16
+ jal x1, mod_mul_256x256
+
+ /* 17: exp = 0xffffffffffffffff0000 = 2^16*0xffffffffffffffff */
+ loopi 16, 4
+ bn.mov w24, w19
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+ nop
+
+ /* 18: exp = 0xffffffffffffffffffff = 0xffffffffffffffff0000+0xffff */
+ bn.mov w24, w15
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+
+ /* 19: exp = 0xffffffffffffffffffff00 = 256*0xffffffffffffffffffff */
+ loopi 8, 4
+ bn.mov w24, w19
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+ nop
+
+ /* 20: exp = 0xffffffffffffffffffffff = 0xffffffffffffffffffff00+0xff */
+ bn.mov w24, w14
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+
+ /* 21: exp = 0xffffffffffffffffffffff0 = 16*0xffffffffffffffffffffff */
+ loopi 4, 4
+ bn.mov w24, w19
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+ nop
+
+ /* 22: exp = 0xfffffffffffffffffffffff = 0xffffffffffffffffffffff0+0xf */
+ bn.mov w24, w13
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+
+ /* 23: exp = 0x3ffffffffffffffffffffffc = 4*0xfffffffffffffffffffffff */
+ loopi 2, 4
+ bn.mov w24, w19
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+ nop
+
+ /* 24: exp = 0x3fffffffffffffffffffffff = 0x3ffffffffffffffffffffffc+0x3 */
+ bn.mov w24, w12
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+
+ /* 25: exp = 0xfffffffffffffffffffffffc = 4*0x3fffffffffffffffffffffff */
+ loopi 2, 4
+ bn.mov w24, w19
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+ nop
+
+ /* 26: exp = 0xfffffffffffffffffffffffd = 0xfffffffffffffffffffffffc+0x1 */
+ bn.mov w24, w10
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+
+ /* 27: exp = p-2
+ = 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd
+ = 0xfffffffffffffffffffffffd
+ + 0xffffffff00000001000000000000000000000000000000000000000000000000
+ w14 = z^exp = z^(p-2) = z^-1 mod p */
+ bn.mov w24, w19
+ bn.mov w25, w18
+ jal x1, mod_mul_256x256
+ bn.mov w14, w19
+
+ /* convert x-coordinate to affine
+ w11 = x_a = x/z = x * z^(-1) = w8 * w14 */
+ bn.mov w24, w8
+ bn.mov w25, w14
+ jal x1, mod_mul_256x256
+ bn.mov w11, w19
+
+ /* convert y-coordinate to affine
+ w12 = y_a = y/z = y * z^(-1) = w9 * w14 */
+ bn.mov w24, w9
+ bn.mov w25, w14
+ jal x1, mod_mul_256x256
+ bn.mov w12, w19
+
+ ret
+
+
+/**
+ * Variable time modular multiplicative inverse computation
+ *
+ * returns x_inv = x^-1 mod m
+ *
+ * This routine computes the modular multiplicative inverse for any x < m in
+ * the field GF(m).
+ * For inverse computation Fermat's little theorem is used, i.e.
+ * we compute x^-1 = x^(m-2) mod m.
+ * For exponentiation we use a standard, variable time (!) square and multiply
+ * algorithm.
+ *
+ * @param[in] w0: x, a 256 bit operand with x < m
+ * @param[in] w29: m, modulus, 2^256 > m > 2^255.
+ * @param[in] w28: u, lower 256 bit of pre-computed Barrett constant
+ * @param[in] w31, all-zero
+ * @param[in] MOD: m, modulus
+ * @param[out] w1: x_inv, modular multiplicative inverse
+ *
+ * Flags: Flags have no meaning beyond the scope of this subroutine.
+ *
+ * clobbered registers: w1, w2, w3, w19, w24, w25
+ * clobbered flag groups: FG0
+ */
+mod_inv:
+
+ /* subtract 2 from modulus for Fermat's little theorem
+ w2 = MOD - 2 = m - 2 */
+ bn.wsrr w2, 0
+ bn.subi w2, w2, 2
+
+ /* init square and multiply: w1 = 1 */
+ bn.addi w1, w31, 1
+
+ /* square and multiply loop */
+ loopi 256, 14
+
+ /* square: w3 = w19 = w24*w25 = w1^2 mod m */
+ bn.mov w24, w1
+ bn.mov w25, w1
+ jal x1, mod_mul_256x256
+ bn.mov w3, w19
+
+ /* shift MSB into carry flag
+ w2 = 2*w2 = w2 << 1 */
+ bn.add w2, w2, w2
+
+ /* skip multiplication if C flag not set */
+ bn.sel w1, w1, w3, C
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 1
+ beq x2, x0, nomul
+
+ /* multiply: w1 = w19 = w24*w25 = w3*w0 mod m */
+ bn.mov w24, w3
+ bn.mov w25, w0
+ jal x1, mod_mul_256x256
+ bn.mov w1, w19
+
+ nomul:
+ nop
+
+ ret
+
+
+/**
+ * Fetch curve point from dmem and randomize z-coordinate
+ *
+ * returns P = (x, y, z) = (x_a*z, y_a*z, z)
+ * with P being a valid P-256 curve point in projective coordinates
+ * x_a and y_a being the affine coordinates as fetched from dmem
+ * z being a randomized z-coordinate
+ *
+ * This routines fetches the affine x- and y-coordinates of a curve point from
+ * dmem and computes a valid set of projective coordinates. The z-coordinate is
+ * randomized and x and y are scaled appropriately.
+ * This routine runs in constant time.
+ *
+ * @param[in] x10: constant 24
+ * @param[in] x21: dptr_x, pointer to dmem location containing affine
+ * x-coordinate of input point
+ * @param[in] x22: dptr_y, pointer to dmem location containing affine
+ * y-coordinate of input point
+ * @param[in] w28: u, lower 256 bit of Barrett constant for curve P-256
+ * @param[in] w29: p, modulus of P-256 underlying finite field
+ * @param[in] w31: all-zero
+ * @param[in] MOD: p, modulus of P-256 underlying finite field
+ * @param[out] w26: z, random projective z-coordinate
+ * @param[out] w6: x, projective x-coordinate
+ * @param[out] w7: y, projective y-coordinate
+ *
+ * Flags: When leaving this subroutine, the M, L and Z flags of FG0 depend on
+ * the scaled projective y-coordinate.
+ *
+ * clobbered registers: w2, w6, w7, w19 to w26
+ * clobbered flag groups: FG0
+ */
+fetch_proj_randomize:
+
+ /* get random number */
+ bn.wsrr w2, 1
+
+ /* reduce random number
+ w26 = z <= w2 mod p */
+ bn.addm w26, w2, w31
+
+ /* fetch x-coordinate from dmem
+ w24 = x_a <= dmem[x22] = dmem[dptr_x] */
+ bn.lid x10, 0(x21)
+
+ /* scale x-coordinate
+ w6 = x <= w24*w26 = x_a*z mod p */
+ bn.mov w25, w26
+ jal x1, mod_mul_256x256
+ bn.mov w6, w19
+
+ /* fetch y-coordinate from dmem
+ w24 = y_a <= dmem[x22] = dmem[dptr_y] */
+ bn.lid x10, 0(x22)
+
+ /* scale y-coordinate
+ w7 = y <= w24*w26 = y_a*z mod p */
+ bn.mov w25, w26
+ jal x1, mod_mul_256x256
+ bn.mov w7, w19
+
+ ret
+
+
+/**
+ * P-256 point doubling in projective space
+ *
+ * returns R = (x_r, y_r, z_r) <= 2*P = 2*(x_p, y_p, z_p)
+ * with R, P being valid P-256 curve points
+ *
+ * This routines doubles a given P-256 curve point in projective coordinate.
+ * Internally this routine makes use of the point addition routine and
+ * adds the point to itself.
+ * This routine runs in constant time.
+ *
+ * @param[in] w8: x_p, x-coordinate of input point
+ * @param[in] w9: y_p, y-coordinate of input point
+ * @param[in] w10: z_p, z-coordinate of input point
+ * @param[in] w27: b, curve domain parameter
+ * @param[in] w29: p, p, modulus of P-256 underlying finite field
+ * @param[in] w28: u, u, lower 256 bit of Barrett constant for curve P-256
+ * @param[in] w31: all-zero.
+ * @param[in] MOD: p, modulus of P-256 underlying finite field
+ * @param[out] w11: x_r, x-coordinate of resulting point
+ * @param[out] w12: y_r, y-coordinate of resulting point
+ * @param[out] w13: z_r, z-coordinate of resulting point
+ *
+ * Flags: Flags have no meaning beyond the scope of this subroutine.
+ *
+ * clobbered registers: w11 to w25
+ * clobbered flag groups: FG0
+ */
+proj_double:
+
+ /* Q = (x_q, y_q, z_q) = (w11, w12, w13) <= P = (x_p, y_p, z_p)
+ = (w8, w9, w10) */
+ bn.mov w11, w8
+ bn.mov w12, w9
+ bn.mov w13, w10
+
+ /* R = (x_r, y_r, z_r) = (w11, w12, w13) = P+Q
+ = (w8, w9, w10) + (w11, w12, w13) = (x_p, y_p, z_p) + (x_q, y_q, z_q) */
+ jal x1, proj_add
+
+ ret
+
+
+/**
+ * P-256 scalar point multiplication in affine space
+ *
+ * returns R = k*P = k*(x_p, y_p)
+ * with R, P being valid P-256 curve points in affine coordinates
+ * k being a 256 bit scalar
+ *
+ * This routine performs scalar multiplication based on the group laws
+ * of Weierstrass curves.
+ * A constant time double-and-add algorithm (sometimes referred to as
+ * double-and-add-always) is used.
+ * Due to the P-256 optimized implementations of the called routines for
+ * point addition and doubling, this routine is limited to P-256.
+ * The routine makes use of blinding by additive splitting the
+ * exponent/scalar k into a random number (rnd) and rnd-k. The double-and-add
+ * loop operates on both shares in parallel applying Shamir's trick.
+ *
+ * @param[in] x21: dptr_x, pointer to affine x-coordinate in dmem
+ * @param[in] x22: dptr_y, pointer to affine y-coordinate in dmem
+ * @param[in] w0: k, scalar for multiplication
+ * @param[in] w1: rnd, blinding parameter
+ * @param[in] w27: b, curve domain parameter
+ * @param[in] w31: all-zero
+ * @param[in] MOD: p, modulus, 2^256 > p > 2^255.
+ * @param[out] w11: x_r, affine x-coordinate of resulting point
+ * @param[out] w12: y_r, affine y-coordinate of resulting point
+ *
+ * Flags: When leaving this subroutine, the M, L and Z flags of FG0 depend on
+ * the computed affine y-coordinate.
+ *
+ * clobbered registers: x2, x3, x10, w0 to w26
+ * clobbered flag groups: FG0
+ */
+scalar_mult_int:
+
+ /* load order of base point G of P-256
+ w29 <= n = dmem[p256_n] */
+ li x2, 29
+ la x3, p256_n
+ bn.lid x2, 0(x3)
+
+ /* store n to MOD WSR */
+ bn.wsrw 0, w29
+
+ /* 1st share (reduced rnd)
+ rnd = w1 <= rnd mod n */
+ bn.addm w1, w1, w31
+
+ /* 2nd share (k-rnd)
+ w0 = w0 - w1 = k - rnd mod n */
+ bn.subm w0, w0, w1
+
+ /* load field modulus p from dmem
+ w29 <= p = dmem[p256_p] */
+ li x2, 29
+ la x3, p256_p
+ bn.lid x2, 0(x3)
+
+ /* store modulus to MOD WSR */
+ bn.wsrw 0, w29
+
+ /* load lower 256 bit of Barrett constant u for modulus p from dmem
+ w28 <= u = dmem[p256_u_p] */
+ li x2, 28
+ la x3, p256_u_p
+ bn.lid x2, 0(x3)
+
+ /* load domain parameter b from dmem
+ w27 <= b = dmem[p256_b] */
+ li x2, 27
+ la x3, p256_b
+ bn.lid x2, 0(x3)
+
+ /* get randomized projective coodinates of curve point
+ P = (x_p, y_p, z_p) = (w8, w9, w10) = (w6, w7, w26) =
+ (x*z mod p, y*z mod p, z) */
+ li x10, 24
+ jal x1, fetch_proj_randomize
+ bn.mov w8, w6
+ bn.mov w9, w7
+ bn.mov w10, w26
+
+ /* Init 2P, this will be used for the addition part in the double-and-add
+ loop when the bit at the current index is 1 for both shares of the scalar.
+ 2P = (w3, w4, w5) <= (w11, w12, w13) <= 2*(w8, w9, w10) = 2*P */
+ jal x1, proj_double
+ bn.mov w3, w11
+ bn.mov w4, w12
+ bn.mov w5, w13
+
+ /* init double-and-add with point in infinity
+ Q = (w8, w9, w10) <= (0, 1, 0) */
+ bn.mov w8, w31
+ bn.addi w9, w31, 1
+ bn.mov w10, w31
+
+ /* double-and-add loop with decreasing index */
+ loopi 256, 32
+
+ /* double point Q
+ Q = (w11, w12, w13) <= 2*(w8, w9, w10) = 2*Q */
+ jal x1, proj_double
+
+ /* re-fetch and randomize P again
+ P = (w6, w7, w26) */
+ jal x1, fetch_proj_randomize
+
+ /* probe if MSb of either of the two scalars (rnd or k-rnd) but not both
+ is 1.
+ If only one MSb is set, select P for addition
+ If both MSbs are set, select 2P for addition
+ (If neither MSB is set, also 2P will be selected but this will be
+ discarded late) */
+ bn.xor w8, w0, w1
+
+ /* P = (w8, w9, w10)
+ <= (w0[255] xor w1[256])?P=(w6, w7, w26):2P=(w3, w4, w5) */
+ bn.sel w8, w6, w3, M
+ bn.sel w9, w7, w4, M
+ bn.sel w10, w26, w5, M
+
+ /* save doubling result to survive follow-up subroutine call
+ Q = (w2, w6, w7) <= (w11, w12, w13) */
+ bn.mov w2, w11
+ bn.mov w6, w12
+ bn.mov w7, w13
+
+ /* add points
+ Q+P = (w11, w12, w13) <= (w11, w12, w13) + (w8, w9, w10) */
+ jal x1, proj_add
+
+ /* probe if MSb of either one or both of the two
+ scalars (rnd or k-rnd) is 1.*/
+ bn.or w8, w0, w1
+
+ /* select doubling result (Q) or addition result (Q+P)
+ Q = w0[255] or w1[255]?Q_a=(w11, w12, w13):Q=(w2, w6, w7) */
+ bn.sel w8, w11, w2, M
+ bn.sel w9, w12, w6, M
+ bn.sel w10, w13, w7, M
+
+ /* rotate both scalars left 1 bit */
+ bn.rshi w0, w0, w0 >> 255
+ bn.rshi w1, w1, w1 >> 255
+
+ /* init regs with random numbers */
+ bn.wsrr w11, 1
+ bn.wsrr w12, 1
+ bn.wsrr w13, 1
+
+ /* get a fresh random number and scale the coordinates of
+ 2P = (w3, w4, w5) (scaling each projective coordinate with same
+ factor results in same point) */
+ bn.wsrr w2, 1
+
+ /* w3 = w3 * w2 */
+ bn.mov w24, w3
+ bn.mov w25, w2
+ jal x1, mod_mul_256x256
+ bn.mov w3, w19
+
+ /* w4 = w4 * w2 */
+ bn.mov w24, w4
+ bn.mov w25, w2
+ jal x1, mod_mul_256x256
+ bn.mov w4, w19
+
+ /* w5 = w5 * w2 */
+ bn.mov w24, w5
+ bn.mov w25, w2
+ jal x1, mod_mul_256x256
+ bn.mov w5, w19
+
+ /* convert back to affine coordinates
+ R = (x_a, y_a) = (w11, w12) */
+ jal x1, proj_to_affine
+
+ ret
+
+
+/**
+ * P-256 ECDSA signature generation
+ *
+ * returns the signature as the pair r, s with
+ * r = x_1 mod n
+ * and s = k^(-1)(msg + r*d) mod n
+ * with x_1 being the affine x-coordinate of the curve point k*G,
+ * where G is the curve's base point.
+ * k being a supplied secret random number,
+ * n being the order of the base point G of P-256,
+ * msg being the msg to be signed,
+ * d being the private key.
+ *
+ * This routine runs in constant time.
+ *
+ * @param[in] dmem[0]: dptr_k, pointer to a 256 bit random secret in dmem
+ * @param[in] dmem[4]: dptr_rnd, pointer to location in dmem containing random
+ * number for blinding
+ * @param[in] dmem[8]: dptr_msg, pointer to the message to be signed in dmem
+ * @param[in] dmem[12]: dptr_r, pointer to dmem location where s component
+ * of signature will be placed
+ * @param[in] dmem[16]: dptr_s, pointer to dmem location where r component
+ * of signature will be placed
+ * @param[in] dmem[28]: dptr_d, pointer to private key d in dmem
+ *
+ * Flags: When leaving this subroutine, the M, L and Z flags of FG0 depend on
+ * the computed affine y-coordinate.
+ *
+ * clobbered registers: x2, x3, x16 to x23, w0 to w26
+ * clobbered flag groups: FG0
+ */
+p256_sign:
+
+ /* init all-zero register */
+ bn.xor w31, w31, w31
+
+ /* load dmem pointer to secret random scalar k: x16 <= dptr_k = dmem[0] */
+ la x16, dptr_k
+ lw x16, 0(x16)
+
+ /* load dmem pointer to random number for blinding rnd in dmem:
+ x17 <= dptr_rnd = dmem[4] */
+ la x17, dptr_rnd
+ lw x17, 0(x17)
+
+ /* load dmem pointer to message msg in dmem: x18 <= dptr_msg = dmem[8] */
+ la x18, dptr_msg
+ lw x18, 0(x18)
+
+ /* load dmem pointer to signature r in dmem: x19 <= dptr_r = dmem[12] */
+ la x19, dptr_r
+ lw x19, 0(x19)
+
+ /* load dmem pointer to signature s in dmem: x20 <= dptr_s = dmem[16] */
+ la x20, dptr_s
+ lw x20, 0(x20)
+
+ /* load dmem pointer to private key d in dmem: x23 <= d = dmem[28] */
+ la x23, dptr_d
+ lw x23, 0(x23)
+
+ /* load private key d from dmem: w0 = dmem[dptr_d] */
+ li x2, 0
+ bn.lid x2, 0(x16)
+
+ /* load random number for blinding from dmem: w1 = dmem[dptr_rnd] */
+ li x2, 1
+ bn.lid x2, 0(x17)
+
+ /* scalar multiplication with base point
+ (x_1, y_1) = (w11, w12) <= d*G = w0*(dmem[dptr_x], dmem[dptr_y]) */
+ la x21, p256_gx
+ la x22, p256_gy
+ jal x1, scalar_mult_int
+
+ /* setup modulus n (curve order) and Barrett constant
+ MOD <= w29 <= n = dmem[p256_n]; w28 <= u_n = dmem[p256_u_n] */
+ li x2, 29
+ la x3, p256_n
+ bn.lid x2, 0(x3)
+ bn.wsrw 0, w29
+ li x2, 28
+ la x3, p256_u_n
+ bn.lid x2, 0(x3)
+
+ /* load secret random number k from dmem: w0 <= k = dmem[dptr_k] */
+ li x2, 0
+ bn.lid x2, 0(x16)
+
+ /* modular multiplicative inverse of k
+ w1 <= k^-1 mod n */
+ jal x1, mod_inv
+
+ /* w19 = k^-1*d mod n; w24 = d = dmem[dptr_d] */
+ li x2, 24
+ bn.lid x2, 0(x23)
+ bn.mov w25, w1
+ jal x1, mod_mul_256x256
+
+ /* w24 = r <= w11 mod n */
+ bn.addm w24, w11, w31
+
+ /* store r of signature in dmem: dmem[dptr_r] <= r = w24 */
+ li x2, 24
+ bn.sid x2, 0(x19)
+
+ /* w0 = w19 <= w24*w25 = w24*w19 = r*k^-1*d mod n */
+ bn.mov w25, w19
+ jal x1, mod_mul_256x256
+ bn.mov w0, w19
+
+ /* load message from dmem: w24 = msg <= dmem[dptr_msg] = dmem[x18] */
+ li x2, 24
+ bn.lid x2, 0(x18)
+
+ /* w19 = k^-1*msg <= w25*w24 = w1*w24 mod n */
+ bn.mov w25, w1
+ jal x1, mod_mul_256x256
+
+ /* w0 = s <= w19 + w0 = d*msg + r*d mod n */
+ bn.addm w0, w19, w0
+
+ /* store s of signature in dmem: dmem[dptr_s] <= s = w0 */
+ li x2, 0
+ bn.sid x2, 0(x20)
+
+ ret
+
+
+/**
+ * P-256 scalar multiplication with base point G
+ *
+ * returns R = d*G = d*(x_g, y_g)
+ * with R and G being valid P-256 curve points in affine coordinates,
+ * furthermore G being the curves base point,
+ * d being a 256 bit scalar
+ *
+ * Performs a scalar multiplication of a scalar with the base point G of curve
+ * P-256.
+ * This routine runs in constant time.
+ *
+ * @param[in] dmem[4]: dptr_rnd, pointer to location in dmem containing random
+ * number for blinding
+ * @param[in] dmem[20]: dptr_x, pointer to affine x-coordinate in dmem
+ * @param[in] dmem[22]: dptr_y, pointer to affine y-coordinate in dmem
+ * @param[in] dmem[28]: dptr_d, pointer to location in dmem containing
+ * scalar d
+ *
+ * Flags: Flags have no meaning beyond the scope of this subroutine.
+ *
+ * clobbered registers: x2, x3, x16, x17, x21, x22, w0 to w26
+ * clobbered flag groups: FG0
+ */
+p256_base_mult:
+
+ /* init all-zero register */
+ bn.xor w31, w31, w31
+
+ /* load scalar d: w0 <= d = dmem[dptr_d] */
+ la x16, dptr_d
+ lw x16, 0(x16)
+
+ /* load dmem pointer to random number for blinding rnd in dmem:
+ x17 <= dptr_rnd = dmem[4] */
+ la x17, dptr_rnd
+ lw x17, 0(x17)
+
+ /* set dmem pointers to base point coordinates */
+ la x21, p256_gx
+ la x22, p256_gy
+
+ /* load private key d from dmem: w0 = dmem[dptr_d] */
+ li x2, 0
+ bn.lid x2, 0(x16)
+
+ /* load random number for blinding from dmem: w1 = dmem[dptr_rnd] */
+ li x2, 1
+ bn.lid x2, 0(x17)
+
+ /* call internal scalar multiplication routine
+ R = (x_a, y_a) = (w11, w12) <= k*P = w0*P */
+ jal x1, scalar_mult_int
+
+ /* set dmem pointer to point x-coordinate */
+ la x21, dptr_x
+ lw x21, 0(x21)
+
+ /* set dmem pointer to point y-coordinate */
+ la x22, dptr_y
+ lw x22, 0(x22)
+
+ /* store result (affine coordinates) in dmem
+ dmem[x21] = dmem[dptr_x] <= x_a = w11
+ dmem[x22] = dmem[dptr_y] <= y_a = w12 */
+ li x2, 11
+ bn.sid x2++, 0(x21)
+ bn.sid x2, 0(x22)
+
+ ret
+
+
+/**
+ * Variable time modular multiplicative inverse computation
+ *
+ * Returns c <= a^(-1) mod m
+ * with a being a bigint of length 256 bit with a < m
+ * m being the modulus with a length of 256 bit
+ * c being a 256-bit result
+ *
+ * This routine implements the computation of the modular multiplicative
+ * inverse based on the binary GCD or Stein's algorithm.
+ * The implemented variant is based on the
+ * "right-shift binary extended GCD" as it is described in section 3.1 of [1]
+ * (Algorithm 1).
+ * [1] https://doi.org/10.1155/ES/2006/32192
+ *
+ * Note that this is a variable time implementation. I.e. this routine will
+ * show a data dependent timing and execution profile. Only use in situations
+ * where a full white-box environment is acceptable.
+ *
+ * Flags: Flags have no meaning beyond the scope of this subroutine.
+ *
+ * @param[in] w0: a, operand
+ * @param[in] MOD: m, modulus
+ * @param[in] w31: all-zero
+ * @param[out] w1: result c
+ *
+ * clobbered registers: x2, w2, w3, w4, w7
+ * clobbered flag groups: FG0
+ */
+mod_inv_var:
+
+ /* w2 = r = 0 */
+ bn.mov w2, w31
+
+ /* w3 = s = 1 */
+ bn.addi w3, w31, 1
+
+ /* w4 = u = MOD */
+ bn.wsrr w4, 0
+ bn.wsrr w7, 0
+
+ /* w5 = v = w0 */
+ bn.mov w5, w0
+
+ ebgcd_loop:
+ /* test if u is odd */
+ bn.or w4, w4, w4
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 4
+ bne x2, x0, ebgcd_u_odd
+
+ /* u is even: */
+ /* w4 = u <= u/2 = w4 >> 1 */
+ bn.rshi w4, w31, w4 >> 1
+
+ /* test if r is odd */
+ bn.or w2, w2, w2
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 4
+ bne x2, x0, ebgcd_r_odd
+
+ /* r is even: */
+ /* w2 = r <= r/2 = w2 >> 1 */
+ bn.rshi w2, w31, w2 >> 1
+ jal x0, ebgcd_loop
+
+ ebgcd_r_odd:
+ /* w2 = r <= (r + m)/2 = (w2 + w7) >> 1 */
+ bn.add w2, w7, w2
+ bn.addc w6, w31, w31
+ bn.rshi w2, w6, w2 >> 1
+ jal x0, ebgcd_loop
+
+ ebgcd_u_odd:
+ /* test if v is odd */
+ bn.or w5, w5, w5
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 4
+ bne x2, x0, ebgcd_uv_odd
+
+ /* v is even: */
+ /* w5 = v <= v/2 = w5 >> 1 */
+ bn.rshi w5, w31, w5 >> 1
+
+ /* test if s is odd */
+ bn.or w3, w3, w3
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 4
+ bne x2, x0, ebgcd_s_odd
+
+ /* s is even: */
+ /* w3 = s <= s/2 = w3 >> 1 */
+ bn.rshi w3, w31, w3 >> 1
+ jal x0, ebgcd_loop
+
+ ebgcd_s_odd:
+ /* w3 = s <= (s + m)/2 = (w3 + w7) >> 1 */
+ bn.add w3, w7, w3
+ bn.addc w6, w31, w31
+ bn.rshi w3, w6, w3 >> 1
+ jal x0, ebgcd_loop
+
+ ebgcd_uv_odd:
+ /* test if v >= u */
+ bn.cmp w5, w4
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 1
+ beq x2, x0, ebgcd_v_gte_u
+
+ /* u > v: */
+ /* w2 = r <= r - s = w2 - w3; if (r < 0): r <= r + m */
+ bn.subm w2, w2, w3
+
+ /* w4 = u <= u - v = w4 - w5 */
+ bn.sub w4, w4, w5
+ jal x0, ebgcd_loop
+
+ ebgcd_v_gte_u:
+ /* w3 = s <= s - r = w3 - w2; if (s < 0) s <= s + m */
+ bn.subm w3, w3, w2
+
+ /* w5 = v <= v - u = w5 - w4 */
+ bn.sub w5, w5, w4
+
+ /* if v > 0 go back to start of loop */
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 8
+ beq x2, x0, ebgcd_loop
+
+ /* v <= 0: */
+ /* if (r > m): w1 = a = r - m = w2 - MOD else: w1 = a = r = w2 */
+ bn.addm w1, w2, w31
+
+ ret
+
+
+/**
+ * P-256 ECDSA signature verification
+ *
+ * returns the affine x-coordinate of
+ * (x1, y1) = u1*G + u2*Q
+ * with u1 = z*s^-1 mod n and u2 = r*s^-1 mod n
+ * with G being the curve's base point,
+ * z being the message
+ * r, s being the signature
+ * Q being the public key.
+ *
+ * The routine computes the x1 coordinate and places it in dmem. x1 will be
+ * reduced (mod n), however, the final comparison has to be performed on the
+ * host side. The signature is valid if x1 == r.
+ * This routine runs in variable time.
+ *
+ * @param[in] dmem[8]: dptr_msg, pointer to the message to be verified in dmem
+ * @param[in] dmem[12]: dptr_r, pointer to s of signature in dmem
+ * @param[in] dmem[16]: dptr_s, pointer to r of signature in dmem
+ * @param[in] dmem[20]: dptr_x, pointer to x-coordinate of public key in dmem
+ * @param[in] dmem[20]: dptr_y, pointer to y-coordinate of public key in dmem
+ * @param[in] dmem[32]: dptr_x_r, pointer to dmem location where the reduced
+ * affine x_r-coordinate will be stored (aka x_1)
+ *
+ * Flags: Flags have no meaning beyond the scope of this subroutine.
+ *
+ * clobbered registers: x2, x3, x13, x14, x17 to x24, w0 to w25
+ * clobbered flag groups: FG0
+ */
+p256_verify:
+
+ /* init all-zero register */
+ bn.xor w31, w31, w31
+
+ /* load domain parameter b from dmem
+ w27 <= b = dmem[p256_b] */
+ li x2, 27
+ la x3, p256_b
+ bn.lid x2, 0(x3)
+
+ /* load dmem pointer to x_r (result) from dmem: x17 <= dptr_x_r = dmem[32] */
+ la x17, dptr_x_r
+ lw x17, 0(x17)
+
+ /* load dmem pointer to message msg in dmem: x18 <= dptr_msg = dmem[8] */
+ la x18, dptr_msg
+ lw x18, 0(x18)
+
+ /* load dmem pointer to signature r in dmem: x19 <= dptr_r = dmem[12] */
+ la x19, dptr_r
+ lw x19, 0(x19)
+
+ /* load dmem pointer to signature s in dmem: x20 <= dptr_s = dmem[16] */
+ la x20, dptr_s
+ lw x20, 0(x20)
+
+ /* load dmem pointer to affine x-coordinate of public key from dmem:
+ x21 <= dptr_x = dmem[20] */
+ la x21, dptr_x
+ lw x21, 0(x21)
+
+ /* load dmem pointer to affine y-coordinate of public key from dmem:
+ x22 <= dptr_y = dmem[24] */
+ la x22, dptr_y
+ lw x22, 0(x22)
+
+ la x23, p256_gx
+ la x24, p256_gy
+
+ /* load r of signature from dmem: w24 = r = dmem[dptr_r] */
+ li x2, 11
+ bn.lid x2, 0(x19)
+
+ /* setup modulus n (curve order) and Barrett constant
+ MOD <= w29 <= n = dmem[p256_n]; w28 <= u_n = dmem[p256_u_n] */
+ li x2, 29
+ la x3, p256_n
+ bn.lid x2, 0(x3)
+ bn.wsrw 0, w29
+ li x2, 28
+ la x3, p256_u_n
+ bn.lid x2, 0(x3)
+
+ /* load s of signature from dmem: w0 = s = dmem[dptr_s] */
+ bn.lid x0, 0(x20)
+
+ /* goto 'fail' if w0 == w31 <=> s == 0 */
+ bn.cmp w0, w31
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 8
+ bne x2, x0, fail
+
+ /* goto 'fail' if w0 >= w29 <=> s >= n */
+ bn.cmp w0, w29
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 1
+ beq x2, x0, fail
+
+ /* w1 = s^-1 mod n */
+ jal x1, mod_inv_var
+
+ /* load r of signature from dmem: w24 = r = dmem[dptr_r] */
+ li x2, 24
+ bn.lid x2, 0(x19)
+
+ /* goto 'fail' if w24 == w31 <=> r == 0 */
+ bn.cmp w24, w31
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 8
+ bne x2, x0, fail
+
+ /* goto 'fail' if w0 >= w29 <=> r >= n */
+ bn.cmp w24, w29
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 1
+ beq x2, x0, fail
+
+ /* w25 = s^-1 = w1 */
+ bn.mov w25, w1
+
+ /* u2 = w0 = w19 <= w24*w25 = r*s^-1 mod n */
+ jal x1, mod_mul_256x256
+ bn.mov w0, w19
+
+ /* load message, w24 = msg = dmem[dptr_msg] */
+ li x2, 24
+ bn.lid x2, 0(x18)
+
+ /* u1 = w1 = w19 <= w24*w25 = w24*w1 = msg*s^-1 mod n */
+ bn.mov w25, w1
+ jal x1, mod_mul_256x256
+ bn.mov w1, w19
+
+ /* setup modulus p and Barrett constant */
+ li x2, 29
+ la x3, p256_p
+ bn.lid x2, 0(x3)
+ bn.wsrw 0, w29
+ li x2, 28
+ la x3, p256_u_p
+ bn.lid x2, 0(x3)
+
+ /* load public key Q from dmem and use in projective form (set z to 1)
+ Q = (w11, w12, w13) = (dmem[dptr_x], dmem[dptr_y], 1) */
+ li x2, 11
+ bn.lid x2++, 0(x21)
+ bn.lid x2, 0(x22)
+ bn.addi w13, w31, 1
+
+ /* load base point G and use in projective form (set z to 1)
+ G = (w8, w9, w10) = (x_g, y_g, 1) */
+ li x13, 8
+ li x14, 9
+ bn.lid x13, 0(x23)
+ bn.lid x14, 0(x24)
+ bn.addi w10, w31, 1
+
+ /* The rest of the routine implements a variable time double-and-add
+ algorithm. For the signature verification we need to compute the point
+ C = (x1, y1) = u_1*G + u_2*Q. This can be done in a single
+ double-and-add routine by using Shamir's Trick. */
+
+ /* G+Q = (w3,w4,w5) = (w11,w12,w13) = (w8,w9,w10) (+) (w11,w12,w13) */
+ jal x1, proj_add
+ bn.mov w3, w11
+ bn.mov w4, w12
+ bn.mov w5, w13
+
+ /* w2 = u_2 & u_0 = w0 & w1*/
+ bn.and w2, w0, w1
+
+ /* init double and add algorithm with (0, 1, 0) */
+ bn.mov w11, w31
+ bn.addi w12, w31, 1
+ bn.mov w13, w31
+
+ /* main loop with dicreasing index i (i=255 downto 0) */
+ loopi 256, 31
+
+ /* always double: C = (w11,w12,w13) <= 2 (*) C = 2 (*) (w11,w12,w13) */
+ bn.mov w8, w11
+ bn.mov w9, w12
+ bn.mov w10, w13
+ jal x1, proj_add
+
+ /* if either u_1[i] == 0 or u_2[i] == 0 jump to 'no_both' */
+ bn.add w2, w2, w2
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 1
+ beq x2, x0, no_both
+
+ /* both bits at current index (u1[i] and u2[i]) are set:
+ do C <= C + (P + Q) and jump to end */
+ bn.mov w8, w3
+ bn.mov w9, w4
+ bn.mov w10, w5
+ jal x1, proj_add
+ jal x0, no_q
+
+ /* either u1[i] or u2[i] is set, but not both */
+ no_both:
+
+ /* if u2[i] is not set jump to 'no_g' */
+ bn.add w6, w0, w0
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 1
+ beq x2, x0, no_g
+
+ /* u2[i] is set: do C <= C + Q */
+ bn.lid x13, 0(x21)
+ bn.lid x14, 0(x22)
+ bn.addi w10, w31, 1
+ jal x1, proj_add
+
+ no_g:
+ /* if u1[i] is not set jump to 'no_q' */
+ bn.add w6, w1, w1
+ csrrs x2, 0x7c0, x0
+ andi x2, x2, 1
+ beq x2, x0, no_q
+
+ /* load base point x-coordinate
+ w8 <= g_x = dmem [p256_gx]; w9 <= g_y = dmem[p256_gy] */
+ bn.lid x13, 0(x23)
+ bn.lid x14, 0(x24)
+
+ /* u1[i] is set: do C <= C + G */
+ bn.addi w10, w31, 1
+ jal x1, proj_add
+
+ no_q:
+ /* left shift w0 and w1 to decrease index */
+ bn.add w0, w0, w0
+ bn.add w1, w1, w1
+
+ /* compute inverse of z-coordinate: w1 = z_c^-1 mod p */
+ bn.mov w0, w13
+ jal x1, mod_inv_var
+
+ /* convert x-coordinate of C back to affine: x1 = x_c * z_c^-1 mod p */
+ bn.mov w24, w1
+ bn.mov w25, w11
+ jal x1, mod_mul_256x256
+
+ /* final reduction: w24 = x1 <= x1 mod n */
+ la x3, p256_n
+ bn.lid x0, 0(x3)
+ bn.wsrw 0, w0
+ bn.subm w24, w19, w31
+
+ fail:
+ /* store affine x-coordinate in dmem: dmem[dptr_x_r] = w24 = x_r */
+ li x2, 24
+ bn.sid x2, 0(x17)
+
+ ret
+
+
+/**
+ * Externally callable wrapper for P-256 scalar point multiplication
+ *
+ * returns R = k*P = k*(x_p, y_p, z_p)
+ * with R, P being valid P-256 curve points in projective form,
+ * k being a 256 bit scalar.
+ *
+ * Sets up context and calls internal scalar multiplication routine.
+ * This routine runs in constant time.
+ *
+ * @param[in] dmem[0]: dK, pointer to location in dmem containing scalar k
+ * @param[in] dmem[4]: dRnd, pointer to location in dmem containing random
+ * number for blinding
+ * @param[in] dmem[20]: dptr_x, pointer to affine x-coordinate in dmem
+ * @param[in] dmem[22]: dptr_y, pointer to affine y-coordinate in dmem
+ *
+ * Flags: When leaving this subroutine, the M, L and Z flags of FG0 depend on
+ * the computed affine y-coordinate.
+ *
+ * clobbered registers: x2, x3, x16, x17, x21, x22, w0 to w25
+ * clobbered flag groups: FG0
+ */
+p256_scalar_mult:
+
+ /* init all-zero register */
+ bn.xor w31, w31, w31
+
+ /* load dmem pointer to scalar k: x16 <= dptr_k = dmem[0] */
+ la x16, dptr_k
+ lw x16, 0(x16)
+
+ /* load dmem pointer to random number for blinding rnd in dmem:
+ x17 <= dptr_rnd = dmem[4] */
+ la x17, dptr_rnd
+ lw x17, 0(x17)
+
+ /* set dmem pointer to point x-coordinate */
+ la x21, dptr_x
+ lw x21, 0(x21)
+
+ /* set dmem pointer to point y-coordinate */
+ la x22, dptr_y
+ lw x22, 0(x22)
+
+ /* load private key d from dmem: w0 = dmem[dptr_d] */
+ li x2, 0
+ bn.lid x2, 0(x16)
+
+ /* load random number for blinding from dmem: w1 = dmem[dptr_rnd] */
+ li x2, 1
+ bn.lid x2, 0(x17)
+
+ /* call internal scalar multiplication routine
+ R = (x_a, y_a) = (w11, w12) <= k*P = w0*P */
+ jal x1, scalar_mult_int
+
+ /* store result (affine coordinates) in dmem
+ dmem[x21] = dmem[dptr_x] <= x_a = w11
+ dmem[x22] = dmem[dptr_y] <= y_a = w12 */
+ li x2, 11
+ bn.sid x2++, 0(x21)
+ bn.sid x2, 0(x22)
+
+ ret
+
+.section .data
+
+/* pointer to k (dptr_k) */
+.globl dptr_k
+.balign 4
+dptr_k:
+ .zero 4
+
+/* pointer to rnd (dptr_rnd) */
+.globl dptr_rnd
+.balign 4
+dptr_rnd:
+ .zero 4
+
+/* pointer to msg (dptr_msg) */
+.globl dptr_msg
+.balign 4
+dptr_msg:
+ .zero 4
+
+/* pointer to R (dptr_r) */
+.globl dptr_r
+.balign 4
+dptr_r:
+ .zero 4
+
+/* pointer to S (dptr_s) */
+.globl dptr_s
+.balign 4
+dptr_s:
+ .zero 4
+
+/* pointer to X (dptr_x) */
+.globl dptr_x
+.balign 4
+dptr_x:
+ .zero 4
+
+/* pointer to Y (dptr_y) */
+.globl dptr_y
+.balign 4
+dptr_y:
+ .zero 4
+
+/* pointer to D (dptr_d) */
+.globl dptr_d
+.balign 4
+dptr_d:
+ .zero 4
+
+/* pointer to verification result x_r aka x_1 (dptr_x_r) */
+.globl dptr_x_r
+.balign 4
+dptr_x_r:
+ .zero 4
+
+/* P-256 domain parameter b */
+.globl p256_b
+.balign 32
+p256_b:
+ .word 0x27d2604b
+ .word 0x3bce3c3e
+ .word 0xcc53b0f6
+ .word 0x651d06b0
+ .word 0x769886bc
+ .word 0xb3ebbd55
+ .word 0xaa3a93e7
+ .word 0x5ac635d8
+
+/* P-256 domain parameter p (modulus) */
+.globl p256_p
+.balign 32
+p256_p:
+ .word 0xffffffff
+ .word 0xffffffff
+ .word 0xffffffff
+ .word 0x00000000
+ .word 0x00000000
+ .word 0x00000000
+ .word 0x00000001
+ .word 0xffffffff
+
+/* Barrett constant u for modulus p */
+.globl p256_u_p
+.balign 32
+p256_u_p:
+ .word 0x00000003
+ .word 0x00000000
+ .word 0xffffffff
+ .word 0xfffffffe
+ .word 0xfffffffe
+ .word 0xfffffffe
+ .word 0xffffffff
+ .word 0x00000000
+
+/* P-256 domain parameter n (order of base point) */
+.globl p256_n
+.balign 32
+p256_n:
+ .word 0xfc632551
+ .word 0xf3b9cac2
+ .word 0xa7179e84
+ .word 0xbce6faad
+ .word 0xffffffff
+ .word 0xffffffff
+ .word 0x00000000
+ .word 0xffffffff
+
+/* Barrett constant u for n */
+.globl p256_u_n
+.balign 32
+p256_u_n:
+ .word 0xeedf9bfe
+ .word 0x012ffd85
+ .word 0xdf1a6c21
+ .word 0x43190552
+ .word 0xffffffff
+ .word 0xfffffffe
+ .word 0xffffffff
+ .word 0x00000000
+
+/* P-256 basepoint G affine x-coordinate */
+.globl p256_gx
+.balign 32
+p256_gx:
+ .word 0xd898c296
+ .word 0xf4a13945
+ .word 0x2deb33a0
+ .word 0x77037d81
+ .word 0x63a440f2
+ .word 0xf8bce6e5
+ .word 0xe12c4247
+ .word 0x6b17d1f2
+
+/* P-256 basepoint G affine y-coordinate */
+.globl p256_gy
+.balign 32
+p256_gy:
+ .word 0x37bf51f5
+ .word 0xcbb64068
+ .word 0x6b315ece
+ .word 0x2bce3357
+ .word 0x7c0f9e16
+ .word 0x8ee7eb4a
+ .word 0xfe1a7f9b
+ .word 0x4fe342e2
diff --git a/sw/device/silicon_creator/lib/crypto/ecdsa-p256/p256_ecdsa.s b/sw/device/silicon_creator/lib/crypto/ecdsa-p256/p256_ecdsa.s
new file mode 100644
index 0000000..7c43d22
--- /dev/null
+++ b/sw/device/silicon_creator/lib/crypto/ecdsa-p256/p256_ecdsa.s
@@ -0,0 +1,123 @@
+/* Copyright lowRISC contributors. */
+/* Licensed under the Apache License, Version 2.0, see LICENSE for details. */
+/* SPDX-License-Identifier: Apache-2.0 */
+
+/**
+ * Elliptic curve P-256 ECDSA
+ *
+ * Uses OTBN ECC P-256 lib to perform an ECDSA operations.
+ */
+
+.section .text.start
+.globl start
+start:
+ /* Read mode, then tail-call either p256_ecdsa_sign or p256_ecdsa_verify */
+ la x2, mode
+ lw x2, 0(x2)
+
+ li x3, 1
+ beq x2, x3, p256_ecdsa_sign
+
+ li x3, 2
+ beq x2, x3, p256_ecdsa_verify
+
+ /* Mode is neither 1 (= sign) nor 2 (= verify). Fail. */
+ unimp
+
+.text
+p256_ecdsa_sign:
+ jal x1, p256_ecdsa_setup_rand
+ jal x1, p256_sign
+ ecall
+
+p256_ecdsa_verify:
+ jal x1, p256_verify
+ ecall
+
+/**
+ * Populate the variables rnd and k with randomness, and setup data pointers.
+ */
+p256_ecdsa_setup_rand:
+ /* Obtain the blinding constant from URND, and write it to `rnd` in DMEM. */
+ bn.wsrr w0, 0x2 /* URND */
+ la x10, rnd
+ bn.sid x0, 0(x10)
+
+ /* Point dptr_rnd to rnd. */
+ la x11, dptr_rnd
+ sw x10, 0(x11)
+
+ /* Obtain the nonce (k) from RND. */
+ bn.wsrr w0, 0x1 /* RND */
+ la x10, k
+ bn.sid x0, 0(x10)
+
+ /* Point dptr_k to k. */
+ la x11, dptr_k
+ sw x10, 0(x11)
+
+ ret
+
+.data
+
+/* Freely available DMEM space. */
+
+/* Operation mode (1 = sign; 2 = verify) */
+.globl mode
+.balign 4
+mode:
+ .zero 4
+
+/* All constants below must be 256b-aligned. */
+
+/* random scalar k */
+.balign 32
+k:
+ .zero 32
+
+/* randomness for blinding */
+.balign 32
+rnd:
+ .zero 32
+
+/* message digest */
+.globl msg
+.balign 32
+msg:
+ .zero 32
+
+/* signature R */
+.globl r
+.balign 32
+r:
+ .zero 32
+
+/* signature S */
+.globl s
+.balign 32
+s:
+ .zero 32
+
+/* public key x-coordinate */
+.globl x
+.balign 32
+x:
+ .zero 32
+
+/* public key y-coordinate */
+.globl y
+.balign 32
+y:
+ .zero 32
+
+/* private key d */
+.globl d
+.balign 32
+d:
+ .zero 32
+
+/* verification result x_r (aka x_1) */
+.globl x_r
+.balign 32
+x_r:
+ .zero 32