[opentitanlib] Add PRESENT cipher
This implementation of the PRESENT cipher is heavily based on the python
implementation in `util/design/lib/present.py`.
Signed-off-by: Jon Flatley <jflat@google.com>
diff --git a/sw/host/opentitanlib/src/util/mod.rs b/sw/host/opentitanlib/src/util/mod.rs
index 5e33c9a..4d655de 100644
--- a/sw/host/opentitanlib/src/util/mod.rs
+++ b/sw/host/opentitanlib/src/util/mod.rs
@@ -8,6 +8,7 @@
pub mod image;
pub mod parse_int;
pub mod usb;
+pub mod present;
pub mod voltage;
/// The `collection` macro provides syntax for hash and set literals.
diff --git a/sw/host/opentitanlib/src/util/present.rs b/sw/host/opentitanlib/src/util/present.rs
new file mode 100644
index 0000000..1b17a8e
--- /dev/null
+++ b/sw/host/opentitanlib/src/util/present.rs
@@ -0,0 +1,270 @@
+// Copyright lowRISC contributors.
+// Licensed under the Apache License, Version 2.0, see LICENSE for details.
+// SPDX-License-Identifier: Apache-2.0
+
+use anyhow::{bail, Result};
+use std::convert::TryInto;
+
+/// PRESENT block cipher.
+///
+/// Based on version 1.2 of the following Python implementation
+/// https://github.com/doegox/python-cryptoplus
+pub struct Present {
+ round_keys: Vec<u64>,
+}
+
+impl Present {
+ pub fn try_new_rounds(key: Vec<u8>, rounds: usize) -> Result<Present> {
+ if rounds < 1 || rounds > 254 {
+ bail!("unsupported number of rounds {}", rounds);
+ }
+
+ let round_keys = match key.len() {
+ 10 => generate_round_keys_80(key, rounds),
+ 16 => generate_round_keys_128(key, rounds),
+ _ => bail!("key length must be 80 or 128 bits"),
+ };
+
+ Ok(Present { round_keys })
+ }
+
+ /// Create a new instance of the PRESENT cipher.
+ ///
+ /// Valid key lengths are 80 and 128 bits. All other key lengths will return an error.
+ pub fn try_new(key: Vec<u8>) -> Result<Present> {
+ Self::try_new_rounds(key, 32)
+ }
+
+ /// Create a new 128-bit PRESENT cipher instance.
+ pub fn new_128(key: &[u8; 16]) -> Present {
+ Self::try_new(key.to_vec()).unwrap()
+ }
+
+ /// Create a new 80-bit PRESENT cipher instance.
+ pub fn new_80(key: &[u8; 10]) -> Present {
+ Self::try_new(key.to_vec()).unwrap()
+ }
+
+ /// Encrypt a 64-bit block.
+ pub fn encrypt_block(&self, block: u64) -> u64 {
+ let mut state = block;
+ state ^= self.round_keys[0];
+ for round_key in &self.round_keys[1..] {
+ state = s_box_layer(state);
+ state = p_box_layer(state);
+ state ^= round_key;
+ }
+ state
+ }
+
+ /// Decrypt a 64-bit block.
+ pub fn decrypt_block(&self, block: u64) -> u64 {
+ let mut state = block;
+ for round_key in self.round_keys[1..].iter().rev() {
+ state ^= round_key;
+ state = p_box_layer_dec(state);
+ state = s_box_layer_dec(state);
+ }
+ state ^ self.round_keys[0]
+ }
+}
+
+const S_BOX: [u8; 16] = [
+ 0x0c, 0x05, 0x06, 0x0b, 0x09, 0x00, 0x0a, 0x0d, 0x03, 0x0e, 0x0f, 0x08, 0x04, 0x07, 0x01, 0x02,
+];
+
+const S_BOX_INV: [u8; 16] = [
+ 0x05, 0x0e, 0x0f, 0x08, 0x0c, 0x01, 0x02, 0x0d, 0x0b, 0x04, 0x06, 0x03, 0x00, 0x07, 0x09, 0x0a,
+];
+
+const P_BOX: [u8; 64] = [
+ 0x00, 0x10, 0x20, 0x30, 0x01, 0x11, 0x21, 0x31, 0x02, 0x12, 0x22, 0x32, 0x03, 0x13, 0x23, 0x33,
+ 0x04, 0x14, 0x24, 0x34, 0x05, 0x15, 0x25, 0x35, 0x06, 0x16, 0x26, 0x36, 0x07, 0x17, 0x27, 0x37,
+ 0x08, 0x18, 0x28, 0x38, 0x09, 0x19, 0x29, 0x39, 0x0a, 0x1a, 0x2a, 0x3a, 0x0b, 0x1b, 0x2b, 0x3b,
+ 0x0c, 0x1c, 0x2c, 0x3c, 0x0d, 0x1d, 0x2d, 0x3d, 0x0e, 0x1e, 0x2e, 0x3e, 0x0f, 0x1f, 0x2f, 0x3f,
+];
+
+const P_BOX_INV: [u8; 64] = [
+ 0x00, 0x04, 0x08, 0x0c, 0x10, 0x14, 0x18, 0x1c, 0x20, 0x24, 0x28, 0x2c, 0x30, 0x34, 0x38, 0x3c,
+ 0x01, 0x05, 0x09, 0x0d, 0x11, 0x15, 0x19, 0x1d, 0x21, 0x25, 0x29, 0x2d, 0x31, 0x35, 0x39, 0x3d,
+ 0x02, 0x06, 0x0a, 0x0e, 0x12, 0x16, 0x1a, 0x1e, 0x22, 0x26, 0x2a, 0x2e, 0x32, 0x36, 0x3a, 0x3e,
+ 0x03, 0x07, 0x0b, 0x0f, 0x13, 0x17, 0x1b, 0x1f, 0x23, 0x27, 0x2b, 0x2f, 0x33, 0x37, 0x3b, 0x3f,
+];
+
+/// Generate the round_keys for an 80-bit key.
+fn generate_round_keys_80(key: Vec<u8>, rounds: usize) -> Vec<u64> {
+ // Pad out key so it fits in a u128 later.
+ let mut orig_key = key;
+ let mut key = vec![0u8; 6];
+ key.append(&mut orig_key);
+
+ // Convert key into a u128 for easier bit manipulation.
+ let key: &[u8; 16] = key.as_slice().try_into().unwrap();
+ let mut key = u128::from_le_bytes(*key);
+
+ let mut round_keys = Vec::new();
+ for i in 1..rounds + 1 {
+ // rawKey[0:64]
+ let round_key = (key >> 16) as u64;
+
+ // 1. Rotate bits
+ // rawKey[19:len(rawKey)]+rawKey[0:19]
+ key = (key & 0x7ffff) << 61 | key >> 19;
+
+ // 2. SBox
+ // rawKey[76:80] = S(rawKey[76:80])
+ key = (S_BOX[(key >> 76) as usize] as u128) << 76 | (key & !0u128 >> (128 - 76));
+
+ // 3. Salt
+ // rawKey[15:20] ^ i
+ key ^= (i as u128) << 15;
+
+ round_keys.push(round_key);
+ }
+
+ round_keys
+}
+
+/// Generate the round_keys for a 128-bit key.
+fn generate_round_keys_128(key: Vec<u8>, rounds: usize) -> Vec<u64> {
+ let mut round_keys = Vec::new();
+
+ // Convert key into a u128 for easier bit manipulation.
+ let key: &[u8; 16] = key.as_slice().try_into().unwrap();
+ let mut key = u128::from_le_bytes(*key);
+ for i in 1..rounds + 1 {
+ // rawKey[0:64]
+ let round_key = (key >> 64) as u64;
+
+ // 1. Rotate bits
+ key = key.rotate_left(61);
+
+ // 2. SBox
+ key = (S_BOX[(key >> 124) as usize] as u128) << 124
+ | (S_BOX[((key >> 120) & 0xF) as usize] as u128) << 120
+ | (key & (!0u128 >> 8));
+
+ // 3. Salt
+ // rawKey[62:67] ^ i
+ key ^= (i as u128) << 62;
+
+ round_keys.push(round_key);
+ }
+
+ round_keys
+}
+
+/// SBox funciton for encryption.
+fn s_box_layer(state: u64) -> u64 {
+ let mut output: u64 = 0;
+ for i in (0..64).step_by(4) {
+ output |= (S_BOX[((state >> i) & 0x0f) as usize] as u64) << i;
+ }
+ output
+}
+
+/// SBox inverse function for decryption.
+fn s_box_layer_dec(state: u64) -> u64 {
+ let mut output: u64 = 0;
+ for i in (0..64).step_by(4) {
+ output |= (S_BOX_INV[((state >> i) & 0x0f) as usize] as u64) << i;
+ }
+ output
+}
+
+/// PBox function for encryption.
+fn p_box_layer(state: u64) -> u64 {
+ let mut output: u64 = 0;
+ for (i, v) in P_BOX.iter().enumerate() {
+ output |= ((state >> i) & 0x01) << v;
+ }
+ output
+}
+
+/// PBox inverse function for decryption.
+fn p_box_layer_dec(state: u64) -> u64 {
+ let mut output: u64 = 0;
+ for (i, v) in P_BOX_INV.iter().enumerate() {
+ output |= ((state >> i) & 0x01) << v;
+ }
+ output
+}
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[rustfmt::skip]
+ const ROUND_KEYS_80: [u64; 32] = [
+ 0x0000000000000000, 0xc000000000000000, 0x5000180000000001, 0x60000a0003000001,
+ 0xb0000c0001400062, 0x900016000180002a, 0x0001920002c00033, 0xa000a0003240005b,
+ 0xd000d4001400064c, 0x30017a001a800284, 0xe01926002f400355, 0xf00a1c0324c005ed,
+ 0x800d5e014380649e, 0x4017b001abc02876, 0x71926802f600357f, 0x10a1ce324d005ec7,
+ 0x20d5e21439c649a8, 0xc17b041abc428730, 0xc926b82f60835781, 0x6a1cd924d705ec19,
+ 0xbd5e0d439b249aea, 0x07b077abc1a8736e, 0x426ba0f60ef5783e, 0x41cda84d741ec1d5,
+ 0xf5e0e839b509ae8f, 0x2b075ebc1d0736ad, 0x86ba2560ebd783ad, 0x8cdab0d744ac1d77,
+ 0x1e0eb19b561ae89b, 0xd075c3c1d6336acd, 0x8ba27a0eb8783ac9, 0x6dab31744f41d700,
+ ];
+
+ #[rustfmt::skip]
+ const ROUND_KEYS_128: [u64; 32] = [
+ 0x0000000000000000, 0xcc00000000000000, 0xc300000000000000, 0x5b30000000000000,
+ 0x580c000000000001, 0x656cc00000000001, 0x6e60300000000001, 0xb595b30000000001,
+ 0xbeb980c000000002, 0x96d656cc00000002, 0x9ffae60300000002, 0x065b595b30000002,
+ 0x0f7feb980c000003, 0xac196d656cc00003, 0xa33dffae60300003, 0xd6b065b595b30003,
+ 0xdf8cf7feb980c004, 0x3b5ac196d656cc04, 0x387e33dffae60304, 0xeced6b065b595b34,
+ 0xe3e1f8cf7feb9809, 0x6bb3b5ac196d6569, 0xbb8f87e33dffae65, 0x80aeced6b065b590,
+ 0xc1ee3e1f8cf7febf, 0x2602bb3b5ac196d0, 0xcb07b8f87e33dffc, 0x34980aeced6b065d,
+ 0x8b2c1ee3e1f8cf78, 0x54d2602bb3b5ac1e, 0x4a2cb07b8f87e33a, 0x97534980aeced6b7,
+ ];
+
+ #[test]
+ fn test_generate_80() {
+ let key = vec![0u8; 10];
+ let round_keys = generate_round_keys_80(key, 32);
+ assert_eq!(round_keys, ROUND_KEYS_80);
+ }
+
+ #[test]
+ fn test_generate_128() {
+ let key = vec![0u8; 16];
+ let round_keys = generate_round_keys_128(key, 32);
+ assert_eq!(round_keys, ROUND_KEYS_128);
+ }
+
+ #[test]
+ fn test_enc_80() -> Result<()> {
+ let cipher = Present::try_new(vec![0; 10])?;
+ assert_eq!(cipher.encrypt_block(0), 0x5579c1387b228445);
+ Ok(())
+ }
+
+ #[test]
+ fn test_dec_80() -> Result<()> {
+ let cipher = Present::try_new(vec![0; 10])?;
+ assert_eq!(cipher.decrypt_block(0x5579c1387b228445), 0);
+ Ok(())
+ }
+
+ #[test]
+ fn test_enc_128() -> Result<()> {
+ let cipher = Present::try_new(vec![0; 16])?;
+ assert_eq!(cipher.encrypt_block(0), 0x96db702a2e6900af);
+ assert_eq!(cipher.encrypt_block(!0), 0x3c6019e5e5edd563);
+ let cipher = Present::try_new(vec![0xff; 16])?;
+ assert_eq!(cipher.encrypt_block(0), 0x13238c710272a5d8);
+ assert_eq!(cipher.encrypt_block(!0), 0x628d9fbd4218e5b4);
+ Ok(())
+ }
+
+ #[test]
+ fn test_dec_128() -> Result<()> {
+ let cipher = Present::try_new(vec![0; 16])?;
+ assert_eq!(cipher.decrypt_block(0x96db702a2e6900af), 0);
+ assert_eq!(cipher.decrypt_block(0x3c6019e5e5edd563), !0);
+ let cipher = Present::try_new(vec![0xff; 16])?;
+ assert_eq!(cipher.decrypt_block(0x13238c710272a5d8), 0);
+ assert_eq!(cipher.decrypt_block(0x628d9fbd4218e5b4), !0);
+ Ok(())
+ }
+}