[prim_prince] Add option to instantiate a registers half-way
Signed-off-by: Michael Schaffner <msf@opentitan.org>
diff --git a/hw/ip/prim/rtl/prim_prince.sv b/hw/ip/prim/rtl/prim_prince.sv
index bd5e50d..655835f 100644
--- a/hw/ip/prim/rtl/prim_prince.sv
+++ b/hw/ip/prim/rtl/prim_prince.sv
@@ -2,15 +2,14 @@
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
-// This module is an implementation of the 64bit PRINCE block cipher. It is a
-// fully unrolled combinational implementation with configurable number of
-// rounds. Due to the reflective construction of this cipher, the same circuit
-// can be used for encryption and decryption, as described below. Further, the
-// primitive supports a 32bit block cipher flavor which is not specified in the
-// original paper. It should be noted, however, that the 32bit version is
-// **not** secure and must not be used in a setting where cryptographic cipher
-// strength is required. The 32bit variant is only intended to be used as a
-// lightweight data scrambling device.
+// This module is an implementation of the 64bit PRINCE block cipher. It is a fully unrolled
+// combinational implementation with configurable number of rounds. Optionally, registers for the
+// data and key states can be enabled, if this is required. Due to the reflective construction of
+// this cipher, the same circuit can be used for encryption and decryption, as described below.
+// Further, the primitive supports a 32bit block cipher flavor which is not specified in the
+// original paper. It should be noted, however, that the 32bit version is **not** secure and must
+// not be used in a setting where cryptographic cipher strength is required. The 32bit variant is
+// only intended to be used as a lightweight data scrambling device.
//
// See also: prim_present, prim_cipher_pkg
//
@@ -33,11 +32,20 @@
parameter int NumRoundsHalf = 5,
// This primitive uses the new key schedule proposed in https://eprint.iacr.org/2014/656.pdf
// Setting this parameter to 1 falls back to the original key schedule.
- parameter bit UseOldKeySched = 1'b0
+ parameter bit UseOldKeySched = 1'b0,
+ // This instantiates a data register halfway in the primitive.
+ parameter bit HalfwayDataReg = 1'b0,
+ // This instantiates a key register halfway in the primitive.
+ parameter bit HalfwayKeyReg = 1'b0
) (
+ input clk_i,
+ input rst_ni,
+
+ input valid_i,
input [DataWidth-1:0] data_i,
input [KeyWidth-1:0] key_i,
- input dec_i, // set to 1 for decryption
+ input dec_i, // set to 1 for decryption
+ output logic valid_o,
output logic [DataWidth-1:0] data_o
);
@@ -45,26 +53,46 @@
// key expansion //
///////////////////
- logic [DataWidth-1:0] k0, k0_prime, k1, k0_new;
-
+ logic [DataWidth-1:0] k0, k0_prime_d, k1_d, k0_new_d, k0_prime_q, k1_q, k0_new_q;
always_comb begin : p_key_expansion
- k0 = key_i[DataWidth-1:0];
- k0_prime = {k0[0], k0[DataWidth-1:2], k0[DataWidth-1] ^ k0[1]};
- k1 = key_i[2*DataWidth-1 : DataWidth];
+ k0 = key_i[DataWidth-1:0];
+ k0_prime_d = {k0[0], k0[DataWidth-1:2], k0[DataWidth-1] ^ k0[1]};
+ k1_d = key_i[2*DataWidth-1 : DataWidth];
// modify key for decryption
if (dec_i) begin
- k0 = k0_prime;
- k0_prime = key_i[DataWidth-1:0];
- k1 ^= prim_cipher_pkg::PRINCE_ALPHA_CONST[DataWidth-1:0];
+ k0 = k0_prime_d;
+ k0_prime_d = key_i[DataWidth-1:0];
+ k1_d ^= prim_cipher_pkg::PRINCE_ALPHA_CONST[DataWidth-1:0];
end
end
if (UseOldKeySched) begin : gen_legacy_keyschedule
- assign k0_new = k1;
+ assign k0_new_d = k1_d;
end else begin : gen_new_keyschedule
// improved keyschedule proposed by https://eprint.iacr.org/2014/656.pdf
- assign k0_new = k0;
+ assign k0_new_d = k0;
+ end
+
+ if (HalfwayKeyReg) begin : gen_key_reg
+ always_ff @(posedge clk_i or negedge rst_ni) begin : p_key_reg
+ if (!rst_ni) begin
+ k1_q <= '0;
+ k0_prime_q <= '0;
+ k0_new_q <= '0;
+ end else begin
+ if (valid_i) begin
+ k1_q <= k1_d;
+ k0_prime_q <= k0_prime_d;
+ k0_new_q <= k0_new_d;
+ end
+ end
+ end
+ end else begin : gen_no_key_reg
+ // just pass the key through in this case
+ assign k1_q = k1_d;
+ assign k0_prime_q = k0_prime_d;
+ assign k0_new_q = k0_new_d;
end
//////////////
@@ -77,7 +105,7 @@
// pre-round XOR
always_comb begin : p_pre_round_xor
data_state[0] = data_i ^ k0;
- data_state[0] ^= k1;
+ data_state[0] ^= k1_d;
data_state[0] ^= prim_cipher_pkg::PRINCE_ROUND_CONST[0][DataWidth-1:0];
end
@@ -105,38 +133,58 @@
assign data_state_xor = data_state_round ^
prim_cipher_pkg::PRINCE_ROUND_CONST[k][DataWidth-1:0];
// improved keyschedule proposed by https://eprint.iacr.org/2014/656.pdf
- if (k % 2 == 1) assign data_state[k] = data_state_xor ^ k0_new;
- else assign data_state[k] = data_state_xor ^ k1;
+ if (k % 2 == 1) assign data_state[k] = data_state_xor ^ k0_new_d;
+ else assign data_state[k] = data_state_xor ^ k1_d;
end
// middle part
- logic [DataWidth-1:0] data_state_middle;
+ logic [DataWidth-1:0] data_state_middle_d, data_state_middle_q, data_state_middle;
if (DataWidth == 64) begin : gen_middle_d64
always_comb begin : p_middle_d64
- data_state_middle = prim_cipher_pkg::sbox4_64bit(data_state[NumRoundsHalf],
+ data_state_middle_d = prim_cipher_pkg::sbox4_64bit(data_state[NumRoundsHalf],
prim_cipher_pkg::PRINCE_SBOX4);
- data_state_middle = prim_cipher_pkg::prince_mult_prime_64bit(data_state_middle);
+ data_state_middle = prim_cipher_pkg::prince_mult_prime_64bit(data_state_middle_q);
data_state_middle = prim_cipher_pkg::sbox4_64bit(data_state_middle,
prim_cipher_pkg::PRINCE_SBOX4_INV);
end
end else begin : gen_middle_d32
always_comb begin : p_middle_d32
- data_state_middle = prim_cipher_pkg::sbox4_32bit(data_state_middle[NumRoundsHalf],
+ data_state_middle_d = prim_cipher_pkg::sbox4_32bit(data_state_middle[NumRoundsHalf],
prim_cipher_pkg::PRINCE_SBOX4);
- data_state_middle = prim_cipher_pkg::prince_mult_prime_32bit(data_state_middle);
+ data_state_middle = prim_cipher_pkg::prince_mult_prime_32bit(data_state_middle_q);
data_state_middle = prim_cipher_pkg::sbox4_32bit(data_state_middle,
prim_cipher_pkg::PRINCE_SBOX4_INV);
end
end
+ if (HalfwayDataReg) begin : gen_data_reg
+ logic valid_q;
+ always_ff @(posedge clk_i or negedge rst_ni) begin : p_data_reg
+ if (!rst_ni) begin
+ valid_q <= 1'b0;
+ data_state_middle_q <= '0;
+ end else begin
+ valid_q <= valid_i;
+ if (valid_i) begin
+ data_state_middle_q <= data_state_middle_d;
+ end
+ end
+ end
+ assign valid_o = valid_q;
+ end else begin : gen_no_data_reg
+ // just pass data through in this case
+ assign data_state_middle_q = data_state_middle_d;
+ assign valid_o = valid_i;
+ end
+
assign data_state[NumRoundsHalf+1] = data_state_middle;
// backward pass
for (genvar k = 1; k <= NumRoundsHalf; k++) begin : gen_bwd_pass
logic [DataWidth-1:0] data_state_xor0, data_state_xor1;
// improved keyschedule proposed by https://eprint.iacr.org/2014/656.pdf
- if (k % 2 == 1) assign data_state_xor0 = data_state[NumRoundsHalf+k] ^ k0_new;
- else assign data_state_xor0 = data_state[NumRoundsHalf+k] ^ k1;
+ if (k % 2 == 1) assign data_state_xor0 = data_state[NumRoundsHalf+k] ^ k0_new_q;
+ else assign data_state_xor0 = data_state[NumRoundsHalf+k] ^ k1_q;
// the construction is reflective, hence the subtraction with NumRoundsHalf
assign data_state_xor1 = data_state_xor0 ^
prim_cipher_pkg::PRINCE_ROUND_CONST[10-NumRoundsHalf+k][DataWidth-1:0];
@@ -165,8 +213,8 @@
always_comb begin : p_post_round_xor
data_o = data_state[2*NumRoundsHalf+1] ^
prim_cipher_pkg::PRINCE_ROUND_CONST[11][DataWidth-1:0];
- data_o ^= k1;
- data_o ^= k0_prime;
+ data_o ^= k1_q;
+ data_o ^= k0_prime_q;
end
////////////////