blob: 84a718f49744af3b6700e5e6378f2b98036082c7 [file] [log] [blame]
/*
* Copyright 2022 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// mnist float model
// MlModel struct initialization to include model I/O info.
// Bytecode loading, input/output processes.
#include <springbok.h>
#include "iree/base/api.h"
#include "iree/hal/api.h"
#include "samples/util/util.h"
#include "mnist.h"
// Compiled module embedded here to avoid file IO:
#if !defined(BUILD_EMITC)
#include "samples/float_model/mnist_bytecode_module_static.h"
#include "samples/float_model/mnist_bytecode_module_static_c.h"
#else
#include "samples/float_model/mnist_c_module_static_c.h"
#include "samples/float_model/mnist_c_module_static_emitc.h"
#endif
#include "samples/float_model/mnist_input_c.h"
const MlModel kModel = {
.num_input = 1,
.num_input_dim = {4},
.input_shape = {{1, 28, 28, 1}},
.input_length = {28 * 28 * 1},
.input_size_bytes = {sizeof(float)},
.num_output = 1,
.output_length = {10},
.output_size_bytes = sizeof(float),
.hal_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_32,
.entry_func = "module.predict",
.model_name = "mnist",
};
MnistOutput score;
iree_status_t create_module(iree_vm_module_t **module) {
#if !defined(BUILD_EMITC)
const struct iree_file_toc_t *module_file_toc =
samples_float_model_mnist_bytecode_module_static_create();
return iree_vm_bytecode_module_create(
iree_make_const_byte_span(module_file_toc->data, module_file_toc->size),
iree_allocator_null(), iree_allocator_system(), module);
#else
return module_create(iree_allocator_system(), module);
#endif
}
const iree_hal_executable_library_header_t **library_query(
iree_hal_executable_library_version_t max_version, void *reserved) {
return mnist_linked_llvm_library_query(max_version,
/*reserved=*/reserved);
}
iree_status_t load_input_data(const MlModel *model, void **buffer,
iree_byte_span_t **byte_span) {
byte_span[0] = malloc(sizeof(iree_byte_span_t));
*byte_span[0] = iree_make_byte_span(
mnist_input, model->input_size_bytes[0] * model->input_length[0]);
return iree_ok_status();
}
iree_status_t process_output(const MlModel *model,
iree_hal_buffer_mapping_t *buffers,
MlOutput *output) {
iree_status_t result = iree_ok_status();
// find the label index with best prediction
float best_out = 0.0;
int best_idx = -1;
for (int i = 0; i < model->output_length[0]; ++i) {
float out = ((float *)buffers[0].contents.data)[i];
if (out > best_out) {
best_out = out;
best_idx = i;
}
}
score.best_out = best_out;
score.best_idx = best_idx;
LOG_INFO("Digit recognition result is: digit: %d", best_idx);
output->result = &score;
output->len = sizeof(score);
return result;
}