Optimize 1x1 group conv.

Change-Id: I92f60e1c1b0dfa255063692265176ec2fce65469
diff --git a/tflm/opt/conv.cc b/tflm/opt/conv.cc
index 9ea92bc..df4dc89 100644
--- a/tflm/opt/conv.cc
+++ b/tflm/opt/conv.cc
@@ -138,6 +138,298 @@
   }
 }
 
+// Accumulates in v0-v7. [v0-v3], [v4-v7] are sub accumulators for two outputs.
+// Load/swizzle filters use [v52-v63].
+// Input activations use [v32-v33].
+// No clobbers.
+void ukernel_s8_s16(const int16_t* input_data0,
+                    const int8_t* filter_data0,
+                    const int8_t* filter_data1,
+                    size_t n) {
+  n = n >> 5;
+  while (n > 0) {
+    // Load filters 0 to v58, v59
+    vld_b_p_x(v52, filter_data0);
+    vaddw_h_vx(v56, v52, 0);
+    vzip_h_vv(v58, v56, v57);
+
+    // Load activations
+    vld_h_p_x(v32, input_data0);
+    vld_h_p_x(v33, input_data0);
+
+    // Multiply filters0 * activations
+    vmulw_w_vv(v16, v58, v32);
+    vmulw_w_vv(v18, v59, v33);
+
+    // Accumulate v0
+    vadd_w_vv_m(v0, v0, v16);
+
+    // Load filters 1 to v62, v63
+    vld_b_p_x(v53, filter_data1);
+    vaddw_h_vx(v60, v53, 0);
+    vzip_h_vv(v62, v60, v61);
+
+    // Multiply filters1 * activations
+    vmulw_w_vv(v20, v62, v32);
+    vmulw_w_vv(v22, v63, v33);
+
+    // Accumulate v4
+    vadd_w_vv_m(v4, v4, v20);
+    n--;
+  }
+}
+
+void conv_per_channel_b64_1x1(
+    const tflite::ConvParams& params, const int32_t* output_multiplier,
+    const int32_t* output_shift, const tflite::RuntimeShape& input_shape,
+    const int16_t* input_data, const tflite::RuntimeShape& filter_shape,
+    const int8_t* filter_data, const tflite::RuntimeShape& bias_shape,
+    const int64_t* bias_data, const tflite::RuntimeShape& output_shape,
+    int16_t* output_data) {
+  const auto batches = MatchingDim(input_shape, 0, output_shape, 0);
+  const auto input_height = input_shape.Dims(1);
+  const auto input_width = input_shape.Dims(2);
+  const auto input_depth = input_shape.Dims(3);
+  const auto input_offset = params.input_offset;
+  const auto filter_input_depth = filter_shape.Dims(3);
+  const auto output_depth = output_shape.Dims(3);
+  const auto output_offset = params.output_offset;
+  const auto output_activation_min = params.quantized_activation_min;
+  const auto output_activation_max = params.quantized_activation_max;
+  const auto groups = input_depth / filter_input_depth;
+  const auto output_filters_per_group = output_depth / groups;
+
+  int32_t accumulators[8];
+  for (int bhw = 0; bhw < batches * input_height * input_width; bhw++) {
+    const int16_t* local_input = input_data + (bhw * input_depth);
+    int16_t* local_output = output_data + (bhw * output_depth);
+    for (int g = 0; g < groups; g++) {
+      const int16_t* group_input = local_input + (g * filter_input_depth);
+      for (int gc = 0; gc + 2 <= output_filters_per_group; gc += 2) {
+        int oc = (g * output_filters_per_group) + gc;
+        const int8_t* local_filters0 = filter_data + (oc * filter_input_depth);
+        const int8_t* local_filters1 = local_filters0 + filter_input_depth;
+
+        vdup_w_x_m(v0, 0);
+        vdup_w_x_m(v4, 0);
+        ukernel_s8_s16(group_input, local_filters0, local_filters1,
+                       filter_input_depth);
+        // sum accumulators
+        vadd_w_vv(v0, v0, v1);
+        vadd_w_vv(v2, v2, v3);
+        vadd_w_vv(v0, v0, v2);
+        vadd_w_vv(v4, v4, v5);
+        vadd_w_vv(v6, v6, v7);
+        vadd_w_vv(v4, v4, v6);
+
+        {
+          vst_w_x(v0, accumulators);
+          int64_t acc64 = bias_data[oc];
+          for (int i = 0; i < 8; i++) {
+            acc64 += accumulators[i];
+          }
+          int32_t acc = tflite::MultiplyByQuantizedMultiplier(
+                acc64, output_multiplier[oc], output_shift[oc]);
+          acc += output_offset;
+          acc = std::clamp(acc, output_activation_min, output_activation_max);
+          local_output[oc] = static_cast<int16_t>(acc);
+        }
+
+        {
+          vst_w_x(v4, accumulators);
+          int64_t acc64 = bias_data[oc + 1];
+          for (int i = 0; i < 8; i++) {
+            acc64 += accumulators[i];
+          }
+          int32_t acc = tflite::MultiplyByQuantizedMultiplier(
+                acc64, output_multiplier[oc + 1], output_shift[oc + 1]);
+          acc += output_offset;
+          acc = std::clamp(acc, output_activation_min, output_activation_max);
+          local_output[oc + 1] = static_cast<int16_t>(acc);
+        }
+      }
+    }
+  }
+}
+
+// Optimized for grouped convolutions, no dilation, 1xn filter
+void conv_per_channel_b64_filter1xn_group(
+    const tflite::ConvParams& params, const int32_t* output_multiplier,
+    const int32_t* output_shift, const tflite::RuntimeShape& input_shape,
+    const int16_t* input_data, const tflite::RuntimeShape& filter_shape,
+    const int8_t* filter_data, const tflite::RuntimeShape& bias_shape,
+    const int64_t* bias_data, const tflite::RuntimeShape& output_shape,
+    int16_t* output_data) {
+  const auto batches = MatchingDim(input_shape, 0, output_shape, 0);
+  const auto stride_width = params.stride_width;
+  const auto pad_width = params.padding_values.width;
+  const auto input_width = input_shape.Dims(2);
+  const auto input_depth = input_shape.Dims(3);
+  const auto input_offset = params.input_offset;
+  const auto filter_width = filter_shape.Dims(2);
+  const auto filter_depth = filter_shape.Dims(3);
+  const auto output_width = output_shape.Dims(2);
+  const auto output_depth = output_shape.Dims(3);
+  const auto output_offset = params.output_offset;
+  const auto output_activation_min = params.quantized_activation_min;
+  const auto output_activation_max = params.quantized_activation_max;
+
+  const auto groups = input_depth / filter_depth;
+  const auto output_filters_per_group = output_depth / groups;
+
+  int32_t accumulators[8];
+  for (int g = 0; g < groups; g++) {
+    for (int gc = 0; gc + 2 <= output_filters_per_group; gc += 2) {
+      int oc = (g * output_filters_per_group) + gc;
+      for (int b = 0; b < batches; ++b) {
+        for (int out_x = 0; out_x < output_width; ++out_x) {
+          const int in_x_origin = out_x * stride_width - pad_width;
+          const int8_t* local_filters0 =
+              filter_data + (oc * filter_width * filter_depth);
+          const int8_t* local_filters1 =
+              local_filters0 + (filter_width * filter_depth);
+          const int16_t* local_input = input_data +
+            (b * input_width * input_depth) +
+            (in_x_origin * input_depth) +
+            (g * filter_depth);
+          int16_t* local_output = output_data +
+              (b * output_width * output_depth) +
+              (out_x * output_depth);
+
+          int64_t acc64_0 = 0;
+          int64_t acc64_1 = 0;
+          vdup_w_x_m(v0, 0);
+          vdup_w_x_m(v4, 0);
+          for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
+            const int8_t* local_filters0x =
+                local_filters0 + (filter_x * filter_depth);
+            const int8_t* local_filters1x =
+                local_filters1 + (filter_x * filter_depth);
+            const int16_t* local_inputx =
+                local_input + (filter_x * input_depth);
+
+            ukernel_s8_s16(local_inputx, local_filters0x, local_filters1x,
+                           filter_depth);
+          }
+
+          // sum accumulators
+          vadd_w_vv(v0, v0, v1);
+          vadd_w_vv(v2, v2, v3);
+          vadd_w_vv(v0, v0, v2);
+          vadd_w_vv(v4, v4, v5);
+          vadd_w_vv(v6, v6, v7);
+          vadd_w_vv(v4, v4, v6);
+
+          {
+            vst_w_x(v0, accumulators);
+            for (int i = 0; i < 8; i++) {
+              acc64_0 += accumulators[i];
+            }
+            acc64_0 += bias_data[oc];
+            int32_t acc = tflite::MultiplyByQuantizedMultiplier(
+                  acc64_0, output_multiplier[oc], output_shift[oc]);
+            acc += output_offset;
+            acc = std::clamp(acc, output_activation_min, output_activation_max);
+            local_output[oc] = static_cast<int16_t>(acc);
+          }
+
+          {
+            vst_w_x(v4, accumulators);
+            for (int i = 0; i < 8; i++) {
+              acc64_1 += accumulators[i];
+            }
+            acc64_1 += bias_data[oc + 1];
+            int32_t acc = tflite::MultiplyByQuantizedMultiplier(
+                  acc64_1, output_multiplier[oc + 1], output_shift[oc + 1]);
+            acc += output_offset;
+            acc = std::clamp(acc, output_activation_min, output_activation_max);
+            local_output[oc + 1] = static_cast<int16_t>(acc);
+          }
+        }
+      }
+    }
+  }
+}
+
+// Optimized for no group, no dilation, 1xn filter.
+void conv_per_channel_b64_filter1xn_non_group(
+    const tflite::ConvParams& params, const int32_t* output_multiplier,
+    const int32_t* output_shift, const tflite::RuntimeShape& input_shape,
+    const int16_t* input_data, const tflite::RuntimeShape& filter_shape,
+    const int8_t* filter_data, const tflite::RuntimeShape& bias_shape,
+    const int64_t* bias_data, const tflite::RuntimeShape& output_shape,
+    int16_t* output_data) {
+  const auto batches = MatchingDim(input_shape, 0, output_shape, 0);
+  const auto stride_width = params.stride_width;
+  const auto pad_width = params.padding_values.width;
+  const auto input_width = input_shape.Dims(2);
+  const auto input_depth = input_shape.Dims(3);
+  const auto input_offset = params.input_offset;
+  const auto filter_width = filter_shape.Dims(2);
+  const auto filter_depth = filter_shape.Dims(3);
+  const auto output_width = output_shape.Dims(2);
+  const auto output_depth = output_shape.Dims(3);
+  const auto output_offset = params.output_offset;
+  const auto output_activation_min = params.quantized_activation_min;
+  const auto output_activation_max = params.quantized_activation_max;
+  int32_t accumulators[8];
+  for (int oc = 0; oc + 2 <= output_depth; oc += 2) {
+    for (int batch = 0; batch < batches; ++batch) {
+      for (int out_x = 0; out_x < output_width; ++out_x) {
+        const int in_x_origin = out_x * stride_width - pad_width;
+
+        const int8_t* local_filters0 =
+            filter_data + (oc * filter_width * filter_depth);
+        const int8_t* local_filters1 =
+            local_filters0 + (filter_width * filter_depth);
+        const int16_t* local_input = input_data +
+            (batch * input_width * input_depth) +
+            (in_x_origin * input_depth);
+        int16_t* local_output = output_data +
+            (batch * output_width * output_depth) +
+            (out_x * output_depth);
+
+        vdup_w_x_m(v0, 0);
+        vdup_w_x_m(v4, 0);
+        ukernel_s8_s16(local_input, local_filters0, local_filters1,
+                       filter_width * filter_depth);
+        // sum accumulators
+        vadd_w_vv(v0, v0, v1);
+        vadd_w_vv(v2, v2, v3);
+        vadd_w_vv(v0, v0, v2);
+        vadd_w_vv(v4, v4, v5);
+        vadd_w_vv(v6, v6, v7);
+        vadd_w_vv(v4, v4, v6);
+        {
+          vst_w_x(v0, accumulators);
+          int64_t acc64 = bias_data[oc];
+          for (int i = 0; i < 8; i++) {
+            acc64 += accumulators[i];
+          }
+          int32_t acc = tflite::MultiplyByQuantizedMultiplier(
+                acc64, output_multiplier[oc], output_shift[oc]);
+          acc += output_offset;
+          acc = std::clamp(acc, output_activation_min, output_activation_max);
+          local_output[oc] = static_cast<int16_t>(acc);
+        }
+
+        {
+          vst_w_x(v4, accumulators);
+          int64_t acc64 = bias_data[oc + 1];
+          for (int i = 0; i < 8; i++) {
+            acc64 += accumulators[i];
+          }
+          int32_t acc = tflite::MultiplyByQuantizedMultiplier(
+                acc64, output_multiplier[oc + 1], output_shift[oc + 1]);
+          acc += output_offset;
+          acc = std::clamp(acc, output_activation_min, output_activation_max);
+          local_output[oc + 1] = static_cast<int16_t>(acc);
+        }
+      }
+    }
+  }
+}
+
 void conv_per_channel_b64(
     const tflite::ConvParams& params, const int32_t* output_multiplier,
     const int32_t* output_shift, const tflite::RuntimeShape& input_shape,
diff --git a/tflm/opt/opt.h b/tflm/opt/opt.h
index 17e004a..6797f36 100644
--- a/tflm/opt/opt.h
+++ b/tflm/opt/opt.h
@@ -70,6 +70,31 @@
     const int8_t* filter_data, const tflite::RuntimeShape& bias_shape,
     const int32_t* bias_data, const tflite::RuntimeShape& output_shape,
     int16_t* output_data);
+
+void conv_per_channel_b64_1x1(
+    const tflite::ConvParams& params, const int32_t* output_multiplier,
+    const int32_t* output_shift, const tflite::RuntimeShape& input_shape,
+    const int16_t* input_data, const tflite::RuntimeShape& filter_shape,
+    const int8_t* filter_data, const tflite::RuntimeShape& bias_shape,
+    const int64_t* bias_data, const tflite::RuntimeShape& output_shape,
+    int16_t* output_data);
+
+void conv_per_channel_b64_filter1xn_non_group(
+    const tflite::ConvParams& params, const int32_t* output_multiplier,
+    const int32_t* output_shift, const tflite::RuntimeShape& input_shape,
+    const int16_t* input_data, const tflite::RuntimeShape& filter_shape,
+    const int8_t* filter_data, const tflite::RuntimeShape& bias_shape,
+    const int64_t* bias_data, const tflite::RuntimeShape& output_shape,
+    int16_t* output_data);
+
+void conv_per_channel_b64_filter1xn_group(
+    const tflite::ConvParams& params, const int32_t* output_multiplier,
+    const int32_t* output_shift, const tflite::RuntimeShape& input_shape,
+    const int16_t* input_data, const tflite::RuntimeShape& filter_shape,
+    const int8_t* filter_data, const tflite::RuntimeShape& bias_shape,
+    const int64_t* bias_data, const tflite::RuntimeShape& output_shape,
+    int16_t* output_data);
+
 void conv_per_channel_b64(
     const tflite::ConvParams& params, const int32_t* output_multiplier,
     const int32_t* output_shift, const tflite::RuntimeShape& input_shape,