blob: b01ad61399c333149a8cb12d8e0a4ca57ab1efe6 [file] [log] [blame]
/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <memory>
#include "crt/kelvin.h"
#include "crt/log.h"
#include "benchmarks/benchmark.h"
#include "benchmarks/cycle_count.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_log.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#if (PROFILE == 1)
#include "tensorflow/lite/micro/micro_profiler.h"
#endif
#define STRINGIZE(x) #x
#define STR(x) STRINGIZE(x)
// In order to include the model data generate from Bazel, include the header
// using the name passed as a macro.
#define MODEL_HEADER_DIRECTORY benchmarks/
#define MODEL_HEADER_TYPE _model.h
#define MODEL_HEADER STR(MODEL_HEADER_DIRECTORY BENCHMARK_NAME MODEL_HEADER_TYPE)
#include MODEL_HEADER
#if (TEST_DATA == 1)
#define TEST_DATA_HEADER_TYPE _test_data.h
#define TEST_DATA_HEADER STR(MODEL_HEADER_DIRECTORY BENCHMARK_NAME TEST_DATA_HEADER_TYPE)
#include TEST_DATA_HEADER
#endif
namespace {
constexpr int kTensorArenaSize = 1232 * 1024;
uint8_t g_tensor_arena[kTensorArenaSize] __attribute__((aligned(64)));
__attribute__((section(".model_output_header"))) BenchmarkOutputHeader output_header = {
.return_code = 0, // Set by kelvin_start based on return value in main.
.iterations = 0,
.cycles = 0,
};
// This includes all ops currently used in the Kelvin model suite. More can be added.
constexpr int kAllOpsNum = 25;
std::unique_ptr<tflite::MicroMutableOpResolver<kAllOpsNum>> GetAllOpsResolver() {
tflite::MicroMutableOpResolver<kAllOpsNum> resolver;
resolver.AddAveragePool2D();
resolver.AddMaxPool2D();
resolver.AddConv2D();
resolver.AddConcatenation();
resolver.AddDepthwiseConv2D();
resolver.AddDequantize();
resolver.AddQuantize();
resolver.AddReshape();
resolver.AddSoftmax();
resolver.AddCallOnce();
resolver.AddVarHandle();
resolver.AddReadVariable();
resolver.AddAssignVariable();
resolver.AddLogistic();
resolver.AddStridedSlice();
resolver.AddFullyConnected();
resolver.AddPad();
resolver.AddLeakyRelu();
resolver.AddSplit();
resolver.AddTransposeConv();
resolver.AddAdd();
resolver.AddSub();
resolver.AddMean();
resolver.AddPack();
resolver.AddShape();
return std::make_unique<tflite::MicroMutableOpResolver<kAllOpsNum>>(resolver);
}
void _print64(const char* header, uint64_t number) {
uint32_t number_low = number & 0xFFFFFFFF;
uint32_t number_hi = number >> 32;
LOG_INFO("%s: 0x%08lx%08lx", header, number_hi, number_low);
}
constexpr int kSuccess = 0;
constexpr int kAllocatonFailed = -1;
constexpr int kInvokeFailed = -2;
} // namespace
int main(int argc, char **argv) {
std::unique_ptr<tflite::MicroMutableOpResolver<kAllOpsNum>> resolver = GetAllOpsResolver();
const auto* model = tflite::GetModel(g_benchmark_model_data);
uint8_t variable_arena[2048];
tflite::MicroAllocator *variable_allocator =
tflite::MicroAllocator::Create(variable_arena, 1024);
tflite::MicroResourceVariables *resource_variables =
tflite::MicroResourceVariables::Create(variable_allocator, 20);
#if (PROFILE == 1)
tflite::MicroProfiler profiler;
std::unique_ptr<tflite::MicroInterpreter> interpreter = std::make_unique<tflite::MicroInterpreter>(
model, *resolver.get(), g_tensor_arena, kTensorArenaSize, resource_variables, &profiler);
// For a profiled model, just run a single iteration
const int iterations = 1;
#else
std::unique_ptr<tflite::MicroInterpreter> interpreter = std::make_unique<tflite::MicroInterpreter>(
model, *resolver.get(), g_tensor_arena, kTensorArenaSize, resource_variables);
const int iterations = ITERATIONS;
#endif
// Run inference outside of benchmark to intialize model.
if (interpreter->AllocateTensors() != kTfLiteOk) {
return kAllocatonFailed;
}
TfLiteTensor* input = interpreter->input(0);
#if (TEST_DATA == 1)
memcpy(tflite::GetTensorData<uint8_t>(input), g_benchmark_test_data, input->bytes);
#else
memset(tflite::GetTensorData<uint8_t>(input), 0, input->bytes);
#endif
if (interpreter->Invoke() != kTfLiteOk) {
return kInvokeFailed;
}
LOG_INFO("========== Begin Benchmark (%s) ==========", STR(BENCHMARK_NAME));
uint64_t begin = mcycle_read();
// TODO(michaelbrooks): Possibly set/verify test data?
for (int i = 0; i < iterations; ++i) {
#if (TEST_DATA == 1)
memcpy(tflite::GetTensorData<uint8_t>(input), g_benchmark_test_data, input->bytes);
#else
memset(tflite::GetTensorData<uint8_t>(input), 0, input->bytes);
#endif
interpreter->Invoke();
}
uint64_t end = mcycle_read();
uint64_t num_cycles = end - begin;
#if (PROFILE == 1)
profiler.LogCsv();
#endif
// Stores benchmark information in output header for other cores to access.
output_header.iterations = iterations;
output_header.cycles = num_cycles;
// If running on a simulator, print cycle information.
uint64_t average_cycles = num_cycles / iterations;
LOG_INFO("Iterations: %ld", output_header.iterations);
_print64("Total Cycles: ", output_header.cycles);
_print64("Average Cycles per Iteration: ", average_cycles);
LOG_INFO("========== End Benchmark ==========");
return kSuccess;
}