| /* |
| * Copyright 2023 Google LLC |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // Mobilenet_v2_1.0_224 quant model |
| // MlModel struct initialization to include model I/O info. |
| // Bytecode loading, input/output processes. |
| |
| #include "mobilenet_v2.h" |
| |
| #include <log.h> |
| |
| // Compiled module embedded here to avoid file IO: |
| #include "mobilenet_quant_input_c.h" |
| #if !defined(BUILD_EMITC) |
| #include "mobilenet_v2_bytecode_module_static.h" |
| #include "mobilenet_v2_bytecode_module_static_c.h" |
| #else |
| #include "mobilenet_v2_c_module_static_c.h" |
| #include "mobilenet_v2_c_module_static_emitc.h" |
| #endif |
| |
| __attribute__((section(".model_output"))) MobilenetV2Output score; |
| |
| iree_status_t create_module(iree_vm_instance_t *instance, |
| iree_vm_module_t **module) { |
| #if !defined(BUILD_EMITC) |
| const struct iree_file_toc_t *module_file_toc = |
| quant_models_mobilenet_v2_bytecode_module_static_create(); |
| return iree_vm_bytecode_module_create( |
| instance, |
| iree_make_const_byte_span(module_file_toc->data, module_file_toc->size), |
| iree_allocator_null(), iree_allocator_system(), module); |
| #else |
| return module_create(instance, iree_allocator_system(), module); |
| #endif |
| } |
| |
| iree_hal_executable_library_query_fn_t library_query(void) { |
| return &llvm_module_linked_llvm_cpu_library_query; |
| } |
| |
| iree_status_t load_input_data(const MlModel *model, void **buffer, |
| iree_const_byte_span_t **byte_span) { |
| byte_span[0] = malloc(sizeof(iree_const_byte_span_t)); |
| *byte_span[0] = iree_make_const_byte_span( |
| mobilenet_quant_input, |
| model->input_size_bytes[0] * model->input_length[0]); |
| return iree_ok_status(); |
| } |
| |
| iree_status_t process_output(const MlModel *model, |
| iree_hal_buffer_mapping_t *buffers, |
| uint32_t *output_length, uint32_t *output_ptr) { |
| iree_status_t result = iree_ok_status(); |
| // find the label index with best prediction |
| int best_out = 0; |
| int best_idx = -1; |
| for (int i = 0; i < model->output_length[0]; ++i) { |
| uint8_t out = ((uint8_t *)buffers[0].contents.data)[i]; |
| if (out > best_out) { |
| best_out = out; |
| best_idx = i; |
| } |
| } |
| score.best_out = best_out; |
| score.best_idx = best_idx + 1; |
| |
| LOG_INFO("Image prediction result is: id: %d", best_idx + 1); |
| |
| *output_length = sizeof(score); |
| *output_ptr = (uint32_t)&score; |
| return result; |
| } |