blob: 4c4f3bed7ca65bf4a173ebcc6ed1094c84f9ddd3 [file] [log] [blame]
/*
* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Mobilenet_v1_0.25_224 quant model
// MlModel struct initialization to include model I/O info.
// Bytecode loading, input/output processes.
#include "mobilenet_v1.h"
#include <log.h>
// Compiled module embedded here to avoid file IO:
#include "mobilenet_quant_input_c.h"
#if !defined(BUILD_EMITC)
#include "mobilenet_v1_bytecode_module_static.h"
#include "mobilenet_v1_bytecode_module_static_c.h"
#else
#include "mobilenet_v1_c_module_static_c.h"
#include "mobilenet_v1_c_module_static_emitc.h"
#endif
__attribute__((section(".model_output"))) MobilenetV1Output score;
iree_status_t create_module(iree_vm_instance_t *instance,
iree_vm_module_t **module) {
#if !defined(BUILD_EMITC)
const struct iree_file_toc_t *module_file_toc =
quant_models_mobilenet_v1_bytecode_module_static_create();
return iree_vm_bytecode_module_create(
instance,
iree_make_const_byte_span(module_file_toc->data, module_file_toc->size),
iree_allocator_null(), iree_allocator_system(), module);
#else
return module_create(instance, iree_allocator_system(), module);
#endif
}
iree_hal_executable_library_query_fn_t library_query(void) {
return &llvm_module_linked_llvm_cpu_library_query;
}
iree_status_t load_input_data(const MlModel *model, void **buffer,
iree_const_byte_span_t **byte_span) {
byte_span[0] = malloc(sizeof(iree_const_byte_span_t));
*byte_span[0] = iree_make_const_byte_span(
mobilenet_quant_input,
model->input_size_bytes[0] * model->input_length[0]);
return iree_ok_status();
}
iree_status_t process_output(const MlModel *model,
iree_hal_buffer_mapping_t *buffers,
uint32_t *output_length, uint32_t *output_ptr) {
iree_status_t result = iree_ok_status();
// find the label index with best prediction
int best_out = 0;
int best_idx = -1;
for (int i = 0; i < model->output_length[0]; ++i) {
uint8_t out = ((uint8_t *)buffers[0].contents.data)[i];
if (out > best_out) {
best_out = out;
best_idx = i;
}
}
score.best_out = best_out;
score.best_idx = best_idx + 1;
LOG_INFO("Image prediction result is: id: %d", best_idx + 1);
*output_length = sizeof(score);
*output_ptr = (uint32_t)&score;
return result;
}