blob: 2f2e3defd2384687ab7d065a3be7b0bb6382c4a5 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module ml_top_core_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output ml_top_reg_pkg::ml_top_core_reg2hw_t reg2hw, // Write
input ml_top_reg_pkg::ml_top_core_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import ml_top_reg_pkg::* ;
localparam int AW = 6;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
logic reg_busy;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i(tl_i),
.err_o(intg_err)
);
// also check for spurious write enables
logic reg_we_err;
logic [8:0] reg_we_check;
prim_reg_we_check #(
.OneHotWidth(9)
) u_prim_reg_we_check (
.clk_i(clk_i),
.rst_ni(rst_ni),
.oh_i (reg_we_check),
.en_i (reg_we && !addrmiss),
.err_o (reg_we_err)
);
logic err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
err_q <= '0;
end else if (intg_err || reg_we_err) begin
err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = err_q | intg_err | reg_we_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(1)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o(tl_o)
);
assign tl_reg_h2d = tl_i;
assign tl_o_pre = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(0)
) u_reg_if (
.clk_i (clk_i),
.rst_ni (rst_ni),
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.en_ifetch_i(prim_mubi_pkg::MuBi4False),
.intg_error_o(),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.busy_i (reg_busy),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
// cdc oversampling signals
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_we;
logic intr_state_host_req_qs;
logic intr_state_host_req_wd;
logic intr_state_finish_qs;
logic intr_state_finish_wd;
logic intr_state_fault_qs;
logic intr_state_fault_wd;
logic intr_enable_we;
logic intr_enable_host_req_qs;
logic intr_enable_host_req_wd;
logic intr_enable_finish_qs;
logic intr_enable_finish_wd;
logic intr_enable_fault_qs;
logic intr_enable_fault_wd;
logic intr_test_we;
logic intr_test_host_req_wd;
logic intr_test_finish_wd;
logic intr_test_fault_wd;
logic ctrl_we;
logic ctrl_freeze_qs;
logic ctrl_freeze_wd;
logic ctrl_ml_reset_qs;
logic ctrl_ml_reset_wd;
logic [21:0] ctrl_pc_start_qs;
logic [21:0] ctrl_pc_start_wd;
logic ctrl_volt_sel_qs;
logic ctrl_volt_sel_wd;
logic [6:0] ctrl_reserv_qs;
logic [6:0] ctrl_reserv_wd;
logic [15:0] memory_bank_ctrl_d_mem_enable_qs;
logic [15:0] memory_bank_ctrl_reserv_qs;
logic error_status_re;
logic error_status_d_mem_out_of_range_qs;
logic error_status_d_mem_out_of_range_wd;
logic [7:0] error_status_d_mem_disable_access_qs;
logic [7:0] error_status_d_mem_disable_access_wd;
logic init_start_we;
logic [21:0] init_start_qs;
logic [21:0] init_start_wd;
logic init_end_we;
logic [21:0] init_end_address_qs;
logic [21:0] init_end_address_wd;
logic init_end_valid_qs;
logic init_end_valid_wd;
logic init_status_re;
logic init_status_init_pending_qs;
logic init_status_init_pending_wd;
logic init_status_init_done_qs;
logic init_status_init_done_wd;
// Register instances
// R[intr_state]: V(False)
// F[host_req]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_intr_state_host_req (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_host_req_wd),
// from internal hardware
.de (hw2reg.intr_state.host_req.de),
.d (hw2reg.intr_state.host_req.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.host_req.q),
.ds (),
// to register interface (read)
.qs (intr_state_host_req_qs)
);
// F[finish]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_intr_state_finish (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_finish_wd),
// from internal hardware
.de (hw2reg.intr_state.finish.de),
.d (hw2reg.intr_state.finish.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.finish.q),
.ds (),
// to register interface (read)
.qs (intr_state_finish_qs)
);
// F[fault]: 2:2
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_intr_state_fault (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_fault_wd),
// from internal hardware
.de (hw2reg.intr_state.fault.de),
.d (hw2reg.intr_state.fault.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.fault.q),
.ds (),
// to register interface (read)
.qs (intr_state_fault_qs)
);
// R[intr_enable]: V(False)
// F[host_req]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_intr_enable_host_req (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_host_req_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.host_req.q),
.ds (),
// to register interface (read)
.qs (intr_enable_host_req_qs)
);
// F[finish]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_intr_enable_finish (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_finish_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.finish.q),
.ds (),
// to register interface (read)
.qs (intr_enable_finish_qs)
);
// F[fault]: 2:2
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_intr_enable_fault (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_fault_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.fault.q),
.ds (),
// to register interface (read)
.qs (intr_enable_fault_qs)
);
// R[intr_test]: V(True)
logic intr_test_qe;
logic [2:0] intr_test_flds_we;
assign intr_test_qe = &intr_test_flds_we;
// F[host_req]: 0:0
prim_subreg_ext #(
.DW (1)
) u_intr_test_host_req (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_host_req_wd),
.d ('0),
.qre (),
.qe (intr_test_flds_we[0]),
.q (reg2hw.intr_test.host_req.q),
.ds (),
.qs ()
);
assign reg2hw.intr_test.host_req.qe = intr_test_qe;
// F[finish]: 1:1
prim_subreg_ext #(
.DW (1)
) u_intr_test_finish (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_finish_wd),
.d ('0),
.qre (),
.qe (intr_test_flds_we[1]),
.q (reg2hw.intr_test.finish.q),
.ds (),
.qs ()
);
assign reg2hw.intr_test.finish.qe = intr_test_qe;
// F[fault]: 2:2
prim_subreg_ext #(
.DW (1)
) u_intr_test_fault (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_fault_wd),
.d ('0),
.qre (),
.qe (intr_test_flds_we[2]),
.q (reg2hw.intr_test.fault.q),
.ds (),
.qs ()
);
assign reg2hw.intr_test.fault.qe = intr_test_qe;
// R[ctrl]: V(False)
// F[freeze]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_ctrl_freeze (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_we),
.wd (ctrl_freeze_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.freeze.q),
.ds (),
// to register interface (read)
.qs (ctrl_freeze_qs)
);
// F[ml_reset]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h1)
) u_ctrl_ml_reset (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_we),
.wd (ctrl_ml_reset_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.ml_reset.q),
.ds (),
// to register interface (read)
.qs (ctrl_ml_reset_qs)
);
// F[pc_start]: 23:2
prim_subreg #(
.DW (22),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (22'h0)
) u_ctrl_pc_start (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_we),
.wd (ctrl_pc_start_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.pc_start.q),
.ds (),
// to register interface (read)
.qs (ctrl_pc_start_qs)
);
// F[volt_sel]: 24:24
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_ctrl_volt_sel (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_we),
.wd (ctrl_volt_sel_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.volt_sel.q),
.ds (),
// to register interface (read)
.qs (ctrl_volt_sel_qs)
);
// F[reserv]: 31:25
prim_subreg #(
.DW (7),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (7'h0)
) u_ctrl_reserv (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_we),
.wd (ctrl_reserv_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.reserv.q),
.ds (),
// to register interface (read)
.qs (ctrl_reserv_qs)
);
// R[memory_bank_ctrl]: V(False)
// F[d_mem_enable]: 15:0
prim_subreg #(
.DW (16),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (16'hf)
) u_memory_bank_ctrl_d_mem_enable (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.memory_bank_ctrl.d_mem_enable.q),
.ds (),
// to register interface (read)
.qs (memory_bank_ctrl_d_mem_enable_qs)
);
// F[reserv]: 31:16
prim_subreg #(
.DW (16),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (16'h0)
) u_memory_bank_ctrl_reserv (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.memory_bank_ctrl.reserv.q),
.ds (),
// to register interface (read)
.qs (memory_bank_ctrl_reserv_qs)
);
// R[error_status]: V(False)
// F[d_mem_out_of_range]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRC),
.RESVAL (1'h0)
) u_error_status_d_mem_out_of_range (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (error_status_re),
.wd (error_status_d_mem_out_of_range_wd),
// from internal hardware
.de (hw2reg.error_status.d_mem_out_of_range.de),
.d (hw2reg.error_status.d_mem_out_of_range.d),
// to internal hardware
.qe (),
.q (reg2hw.error_status.d_mem_out_of_range.q),
.ds (),
// to register interface (read)
.qs (error_status_d_mem_out_of_range_qs)
);
// F[d_mem_disable_access]: 8:1
prim_subreg #(
.DW (8),
.SwAccess(prim_subreg_pkg::SwAccessRC),
.RESVAL (8'h0)
) u_error_status_d_mem_disable_access (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (error_status_re),
.wd (error_status_d_mem_disable_access_wd),
// from internal hardware
.de (hw2reg.error_status.d_mem_disable_access.de),
.d (hw2reg.error_status.d_mem_disable_access.d),
// to internal hardware
.qe (),
.q (reg2hw.error_status.d_mem_disable_access.q),
.ds (),
// to register interface (read)
.qs (error_status_d_mem_disable_access_qs)
);
// R[init_start]: V(False)
prim_subreg #(
.DW (22),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (22'h0)
) u_init_start (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (init_start_we),
.wd (init_start_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.init_start.q),
.ds (),
// to register interface (read)
.qs (init_start_qs)
);
// R[init_end]: V(False)
// F[address]: 21:0
prim_subreg #(
.DW (22),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (22'h0)
) u_init_end_address (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (init_end_we),
.wd (init_end_address_wd),
// from internal hardware
.de (hw2reg.init_end.address.de),
.d (hw2reg.init_end.address.d),
// to internal hardware
.qe (),
.q (reg2hw.init_end.address.q),
.ds (),
// to register interface (read)
.qs (init_end_address_qs)
);
// F[valid]: 22:22
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_init_end_valid (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (init_end_we),
.wd (init_end_valid_wd),
// from internal hardware
.de (hw2reg.init_end.valid.de),
.d (hw2reg.init_end.valid.d),
// to internal hardware
.qe (),
.q (reg2hw.init_end.valid.q),
.ds (),
// to register interface (read)
.qs (init_end_valid_qs)
);
// R[init_status]: V(False)
// F[init_pending]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRC),
.RESVAL (1'h0)
) u_init_status_init_pending (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (init_status_re),
.wd (init_status_init_pending_wd),
// from internal hardware
.de (hw2reg.init_status.init_pending.de),
.d (hw2reg.init_status.init_pending.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (init_status_init_pending_qs)
);
// F[init_done]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRC),
.RESVAL (1'h0)
) u_init_status_init_done (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (init_status_re),
.wd (init_status_init_done_wd),
// from internal hardware
.de (hw2reg.init_status.init_done.de),
.d (hw2reg.init_status.init_done.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (init_status_init_done_qs)
);
logic [8:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[0] = (reg_addr == ML_TOP_INTR_STATE_OFFSET);
addr_hit[1] = (reg_addr == ML_TOP_INTR_ENABLE_OFFSET);
addr_hit[2] = (reg_addr == ML_TOP_INTR_TEST_OFFSET);
addr_hit[3] = (reg_addr == ML_TOP_CTRL_OFFSET);
addr_hit[4] = (reg_addr == ML_TOP_MEMORY_BANK_CTRL_OFFSET);
addr_hit[5] = (reg_addr == ML_TOP_ERROR_STATUS_OFFSET);
addr_hit[6] = (reg_addr == ML_TOP_INIT_START_OFFSET);
addr_hit[7] = (reg_addr == ML_TOP_INIT_END_OFFSET);
addr_hit[8] = (reg_addr == ML_TOP_INIT_STATUS_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[0] & (|(ML_TOP_CORE_PERMIT[0] & ~reg_be))) |
(addr_hit[1] & (|(ML_TOP_CORE_PERMIT[1] & ~reg_be))) |
(addr_hit[2] & (|(ML_TOP_CORE_PERMIT[2] & ~reg_be))) |
(addr_hit[3] & (|(ML_TOP_CORE_PERMIT[3] & ~reg_be))) |
(addr_hit[4] & (|(ML_TOP_CORE_PERMIT[4] & ~reg_be))) |
(addr_hit[5] & (|(ML_TOP_CORE_PERMIT[5] & ~reg_be))) |
(addr_hit[6] & (|(ML_TOP_CORE_PERMIT[6] & ~reg_be))) |
(addr_hit[7] & (|(ML_TOP_CORE_PERMIT[7] & ~reg_be))) |
(addr_hit[8] & (|(ML_TOP_CORE_PERMIT[8] & ~reg_be)))));
end
// Generate write-enables
assign intr_state_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_host_req_wd = reg_wdata[0];
assign intr_state_finish_wd = reg_wdata[1];
assign intr_state_fault_wd = reg_wdata[2];
assign intr_enable_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_host_req_wd = reg_wdata[0];
assign intr_enable_finish_wd = reg_wdata[1];
assign intr_enable_fault_wd = reg_wdata[2];
assign intr_test_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_host_req_wd = reg_wdata[0];
assign intr_test_finish_wd = reg_wdata[1];
assign intr_test_fault_wd = reg_wdata[2];
assign ctrl_we = addr_hit[3] & reg_we & !reg_error;
assign ctrl_freeze_wd = reg_wdata[0];
assign ctrl_ml_reset_wd = reg_wdata[1];
assign ctrl_pc_start_wd = reg_wdata[23:2];
assign ctrl_volt_sel_wd = reg_wdata[24];
assign ctrl_reserv_wd = reg_wdata[31:25];
assign error_status_re = addr_hit[5] & reg_re & !reg_error;
assign error_status_d_mem_out_of_range_wd = '1;
assign error_status_d_mem_disable_access_wd = '1;
assign init_start_we = addr_hit[6] & reg_we & !reg_error;
assign init_start_wd = reg_wdata[21:0];
assign init_end_we = addr_hit[7] & reg_we & !reg_error;
assign init_end_address_wd = reg_wdata[21:0];
assign init_end_valid_wd = reg_wdata[22];
assign init_status_re = addr_hit[8] & reg_re & !reg_error;
assign init_status_init_pending_wd = '1;
assign init_status_init_done_wd = '1;
// Assign write-enables to checker logic vector.
always_comb begin
reg_we_check = '0;
reg_we_check[0] = intr_state_we;
reg_we_check[1] = intr_enable_we;
reg_we_check[2] = intr_test_we;
reg_we_check[3] = ctrl_we;
reg_we_check[4] = 1'b0;
reg_we_check[5] = 1'b0;
reg_we_check[6] = init_start_we;
reg_we_check[7] = init_end_we;
reg_we_check[8] = 1'b0;
end
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_host_req_qs;
reg_rdata_next[1] = intr_state_finish_qs;
reg_rdata_next[2] = intr_state_fault_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_host_req_qs;
reg_rdata_next[1] = intr_enable_finish_qs;
reg_rdata_next[2] = intr_enable_fault_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
reg_rdata_next[2] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = ctrl_freeze_qs;
reg_rdata_next[1] = ctrl_ml_reset_qs;
reg_rdata_next[23:2] = ctrl_pc_start_qs;
reg_rdata_next[24] = ctrl_volt_sel_qs;
reg_rdata_next[31:25] = ctrl_reserv_qs;
end
addr_hit[4]: begin
reg_rdata_next[15:0] = memory_bank_ctrl_d_mem_enable_qs;
reg_rdata_next[31:16] = memory_bank_ctrl_reserv_qs;
end
addr_hit[5]: begin
reg_rdata_next[0] = error_status_d_mem_out_of_range_qs;
reg_rdata_next[8:1] = error_status_d_mem_disable_access_qs;
end
addr_hit[6]: begin
reg_rdata_next[21:0] = init_start_qs;
end
addr_hit[7]: begin
reg_rdata_next[21:0] = init_end_address_qs;
reg_rdata_next[22] = init_end_valid_qs;
end
addr_hit[8]: begin
reg_rdata_next[0] = init_status_init_pending_qs;
reg_rdata_next[1] = init_status_init_done_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// shadow busy
logic shadow_busy;
assign shadow_busy = 1'b0;
// register busy
assign reg_busy = shadow_busy;
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we, clk_i, !rst_ni)
`ASSERT_PULSE(rePulse, reg_re, clk_i, !rst_ni)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o_pre.d_valid, clk_i, !rst_ni)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), clk_i, !rst_ni)
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule