| /* Copyright 2018 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/micro/kernels/softmax.h" |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/reference/softmax.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/op_macros.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/xtensa/xtensa.h" |
| #include "tensorflow/lite/micro/kernels/xtensa/xtensa_softmax.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| namespace { |
| |
| #if defined(HIFI4) || defined(HIFI5) |
| TfLiteStatus EvalHifiInt8(const XtensaSoftmaxOpData* op_data, |
| const TfLiteEvalTensor* input, |
| TfLiteEvalTensor* output, TfLiteContext* context) { |
| const RuntimeShape& input_shape = tflite::micro::GetTensorShape(input); |
| const int8_t* input_data = tflite::micro::GetTensorData<int8_t>(input); |
| const RuntimeShape& output_shape = tflite::micro::GetTensorShape(output); |
| int8_t* output_data = tflite::micro::GetTensorData<int8_t>(output); |
| const int trailing_dim = input_shape.DimensionsCount() - 1; |
| const int outer_size = |
| MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape); |
| const int depth = |
| MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim); |
| |
| void* p_scratch = static_cast<void*>( |
| context->GetScratchBuffer(context, op_data->scratch_tensor_index)); |
| for (int i = 0; i < outer_size; ++i) { |
| int err = xa_nn_vec_softmax_asym8s_asym8s( |
| &output_data[i * depth], &input_data[i * depth], |
| op_data->params.diff_min, op_data->params.input_left_shift, |
| op_data->params.input_multiplier, depth, p_scratch); |
| TF_LITE_ENSURE(context, err == 0); |
| } |
| return kTfLiteOk; |
| } |
| #endif // defined(HIFI4) || defined(HIFI5) |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); |
| TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); |
| |
| if (input->type == kTfLiteInt8 && output->type == kTfLiteInt16) { |
| return XtensaEvalSoftmaxInt8Int16(context, node); |
| } |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| |
| #if defined(HIFI4) || defined(HIFI5) |
| XtensaSoftmaxOpData op_data = |
| *static_cast<XtensaSoftmaxOpData*>(node->user_data); |
| SoftmaxParams params = op_data.params; |
| #else |
| SoftmaxParams params = *static_cast<SoftmaxParams*>(node->user_data); |
| #endif |
| |
| if (input->type == kTfLiteInt8 && output->type == kTfLiteInt8) { |
| #if defined(HIFI4) || defined(HIFI5) |
| return EvalHifiInt8(static_cast<XtensaSoftmaxOpData*>(node->user_data), |
| input, output, context); |
| #elif defined(VISION_P6) |
| return SoftmaxEvalVision( |
| context, node, *(static_cast<XtensaSoftmaxOpData*>(node->user_data)), |
| input, output); |
| #else |
| tflite::reference_ops::Softmax( |
| params, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| return kTfLiteOk; |
| #endif // defined(HIFI4) || defined(HIFI5) |
| } |
| |
| if (input->type == kTfLiteInt16 && output->type == kTfLiteInt16) { |
| tflite::reference_ops::SoftmaxInt16( |
| params, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int16_t>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int16_t>(output)); |
| return kTfLiteOk; |
| } |
| |
| if (input->type == kTfLiteFloat32) { |
| tflite::reference_ops::Softmax(params, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<float>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| return kTfLiteOk; |
| } |
| |
| MicroPrintf("Type %s (%d) not supported.", TfLiteTypeGetName(input->type), |
| input->type); |
| return kTfLiteError; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_SOFTMAX() { |
| return tflite::micro::RegisterOp(XtensaInitSoftmax, XtensaPrepareSoftmax, |
| Eval); |
| } |
| |
| } // namespace tflite |